Neutrinoless double beta decay in effective field theory

Wouter Dekens

with

T. Tong, M. Hoferichter, G. Zhou, K. Fuyuto, V. Cirigliano, J. de Vries, M.L. Graesser, E. Mereghetti, M. Piarulli, S. Pastore, U. van Kolck, A. Walker-Loud, R.B. Wiringa

• Violates lepton number, $\Delta L=2$

W. Dekens, N3AS, 03/01

Schechter, Valle, `82

Future reach: (LEGEND, nEXO, CUPID)

 $T_{1/2}^{0\nu} > 10^{28} \mathrm{yr}$

Schechter, Valle, `82

Schechter, Valle, `82

W. Dekens, N3AS, 03/01

Introduction

 Violates lepton number, ΔL=2 	$T_{1/2}^{0\nu}(^{76}\text{Ge})$	$T_{1/2}^{0\nu}(^{130}\text{Te})$	$T_{1/2}^{0\nu}(^{136}\text{Xe})$
	Gerda	Cuore	KamLAND-zen
 Stringently constrained experimentally 	$> 0 10^{25} vr$	$> 3.2 \cdot 10^{25} \text{ yr}$	$> 1.1 \cdot 10^{26} um$
To be improved by 1-2 orders	> 9 · 10 yl	> 5.2 ° 10 yr	> 1.1 · 10 yl
 Would imply that Neutrino's are Majorana particles Physics beyond the SM 	Future reach: (LEGEND, nEXO, CUPID) $T_{1/2}^{0\nu} > 10^{28} \mathrm{yr}$		> 10 ²⁸ yr

Well-known Majorana mass mechanism

W. Dekens, N3AS, 03/01

Well-known Majorana mass mechanism

•

Heavy BSM mechanisms

- Many possible scenarios
 - Left-right model,
 - R-parity violating SUSY
 - Leptoquarks...

Well-known Majorana mass mechanism

•

Heavy BSM mechanisms

- Many possible scenarios
 - Left-right model,
 - R-parity violating SUSY
 - Leptoquarks...
- How to describe all LNV sources systematically?

From heavy $\Delta L = 2$ physics

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{c_i^{(5)}}{\Lambda} O_i^{(5)} + \frac{c_i^{(7)}}{\Lambda^3} O_i^{(7)} + \frac{c_i^{(9)}}{\Lambda^5} O_i^{(9)} + \dots$$

Dimension-five	Dimension-seven	Dimension-nine
	 12 ΔL=2 operators 	• Consider subset of operators
$\mathcal{L}_5 = \frac{c_5}{\Lambda} (L^T C \tilde{H}) (\tilde{H}^T L)$	$\begin{array}{c c} 1: \psi^2 H^4 + \text{h.c.} \\ \hline \mathcal{O}_{LH} & \epsilon_{ij} \epsilon_{mn} (L^i C L^m) H^j H^n (H^{\dagger} H) \\ \hline 3: \psi^2 H^3 D + \text{h.c.} \\ \hline \mathcal{O}_{LHDe} & \epsilon_{ij} \epsilon_{mn} \left(L^i C \gamma_{\mu} e \right) H^j H^m D^{\mu} H^n \\ \hline 5: \psi^4 D + \text{h.c.} \\ \hline \mathcal{O}_{LL \overline{d} u D} & \epsilon_{ij} (\overline{d} \gamma_{\mu} u) (L^i C D^{\mu} L^j) \\ \mathcal{O}_{LL \overline{d} u D}^{(2)} & \epsilon_{ij} (\overline{d} \gamma_{\mu} u) (L^i C \sigma^{\mu\nu} D_{\nu} L^j) \\ \mathcal{O}_{\overline{L} Q d D}^{(1)} & (Q C \gamma_{\mu} d) (\overline{L} D^{\mu} d) \\ \mathcal{O}_{\overline{L} Q d D}^{(2)} & (\overline{L} \gamma_{\mu} Q) (d C D^{\mu} d) \\ \mathcal{O}_{d d \overline{d} \overline{e} D} & (\overline{e} \gamma_{\mu} d) (d C D^{\mu} d) \\ \hline \end{array}$	$\begin{split} \mathrm{LM1} &= i\sigma_{ab}^{(2)}(\overline{Q}_{a}\gamma^{\mu}Q_{c})(\overline{u}_{R}\gamma_{\mu}d_{R})(\overline{\ell}_{b}\ell_{c}^{C})\\ \mathrm{LM2} &= i\sigma_{ab}^{(2)}(\overline{Q}_{a}\gamma^{\mu}\lambda^{A}Q_{c})(\overline{u}_{R}\gamma_{\mu}\lambda^{A}d_{R})(\overline{\ell}_{b}\ell_{c}^{C})\\ \mathrm{LM3} &= (\overline{u}_{R}Q_{a})(\overline{u}_{R}Q_{b})(\overline{\ell}_{a}\ell_{b}^{C})\\ \mathrm{LM4} &= (\overline{u}_{R}\lambda^{A}Q_{a})(\overline{u}_{R}\lambda^{A}Q_{b})(\overline{\ell}_{a}\ell_{b}^{C})\\ \mathrm{LM5} &= i\sigma_{ab}^{(2)}i\sigma_{cd}^{(2)}(\overline{Q}_{a}d_{R})(\overline{Q}_{c}d_{R})(\overline{\ell}_{b}\ell_{d}^{C})\\ \mathrm{LM6} &= i\sigma_{ab}^{(2)}i\sigma_{cd}^{(2)}(\overline{Q}_{a}\lambda^{A}d_{R})(\overline{Q}_{c}\lambda^{A}d_{R})(\overline{\ell}_{b}\ell_{d}^{C})\\ \mathrm{LM7} &= (\overline{u}_{R}\gamma^{\mu}d_{R})(\overline{u}_{R}\gamma_{\mu}d_{R})(\overline{e}_{R}e_{R}^{C})\\ \mathrm{LM8} &= (\overline{u}_{R}\gamma^{\mu}d_{R})i\sigma_{ab}^{(2)}(\overline{Q}_{a}\lambda^{A}d_{R})(\overline{\ell}_{b}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM9} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})i\sigma_{ab}^{(2)}(\overline{Q}_{a}\lambda^{A}d_{R})(\overline{\ell}_{b}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM10} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}\lambda_{a}Q_{a})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C})\\ \mathrm{LM11} &= (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}\lambda^{A}Q_{a})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C})\\ \mathrm{Liao} \text{ and Ma '20; Li et al '20;} \end{split}$

W. Dekens, N3AS, 03/01

Effective Field Theory

From heavy $\Delta L = 2$ physics $\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{c_i^{(5)}}{\Lambda} O_i^{(5)} + \frac{c_i^{(7)}}{\Lambda^3} O_i^{(7)} + \frac{c_i^{(9)}}{\Lambda^5} O_i^{(9)} + \dots$ **Dimension-five Dimension-seven Dimension-nine** • 12 ΔL=2 operators • Consider subset of operators $1: \psi^2 H^4 + h.c.$ $\mathcal{O}_{LH} \mid \epsilon_{ij}\epsilon_{mn}(L^iCL^m)H^jH^n(H^{\dagger}H)$ $3: \psi^2 H^3 D + h.c.$ $\mathcal{O}_{LHDe} \mid \epsilon_{ij}\epsilon_{mn} \left(L^i C \gamma_\mu e \right) H^j H^m D^\mu H^n$ $\mathcal{L}_5 = \frac{c_5}{\Lambda} (L^T C \tilde{H}) (\tilde{H}^T L)$ 5 : $\psi^4 D$ + h.c. ${\cal O}^{(1)}_{LL \overline{d} u D}$ $\epsilon_{ij}(\overline{d}\gamma_{\mu}u)(L^iCD^{\mu}L^j)$ $\epsilon_{ij}(\bar{d}\gamma_{\mu}u)(L^iC\sigma^{\mu\nu}D_{\nu}L^j)$ $\mathcal{O}_{\overline{L}QddD}^{(1)}$ $(QC\gamma_{\mu}d)(\overline{L}D^{\mu}d)$ $\mathcal{O}^{(2)}_{\overline{L}QddD}$ $(\overline{L}\gamma_{\mu}Q)(dCD^{\mu}d)$ $(\overline{e}\gamma_{\mu}d)(dCD^{\mu}d)$ • Recently complete basis $\mathcal{O}_{ddd\overline{e}D}$ Liao and Ma '20; Li et al '20;

Kobach '16; Weinberg '79; Lehman '14; Prezeau and Ramsey-Musolf '03; Graesser '16; Liao and Ma '20; Li et al '20;

From heavy $\Delta L = 2$ physics $\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{c_i^{(5)}}{\Lambda}O_i^{(5)} + \frac{c_i^{(7)}}{\Lambda^3}O_i^{(7)} + \frac{c_i^{(9)}}{\Lambda^5}O_i^{(9)} + \dots$

Kobach '16; Weinberg '79; Lehman '14; Prezeau and Ramsey-Musolf '03; Graesser '16; Liao and Ma '20; Li et al '20;

From heavy $\Delta L = 2$ physics $\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{c_i^{(5)}}{\Lambda}O_i^{(5)} + \frac{c_i^{(7)}}{\Lambda^3}O_i^{(7)} + \frac{c_i^{(9)}}{\Lambda^5}O_i^{(9)} + \dots$

Kobach '16; Weinberg '79; Lehman '14; Prezeau and Ramsey-Musolf '03; Graesser '16; Liao and Ma '20; Li et al '20;

From heavy $\Delta L = 2$ physics

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{c_i^{(5)}}{\Lambda} O_i^{(5)} + \frac{c_i^{(7)}}{\Lambda^3} O_i^{(7)} + \frac{c_i^{(9)}}{\Lambda^5} O_i^{(9)} + \dots$$

Interactions involving light ν_R

• Can be described in the same framework (ν SMEFT):

$$\mathcal{L}_{\nu_R} = i\bar{\nu}_R \partial \!\!\!/ \nu_R - \frac{1}{2}\bar{\nu}_R^c M_R \nu_R - \bar{L}\tilde{H}Y_D \nu_R + \mathcal{L}_{\nu_R}^{(6)} + \mathcal{L}_{\nu_R}^{(7)}$$

From heavy $\Delta L = 2$ physics

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{c_i^{(5)}}{\Lambda} O_i^{(5)} + \frac{c_i^{(7)}}{\Lambda^3} O_i^{(7)} + \frac{c_i^{(9)}}{\Lambda^5} O_i^{(9)} + \dots$$

Interactions involving light ν_R

• Can be described in the same framework (ν SMEFT):

$$\mathcal{L}_{\nu_R} = i\bar{\nu}_R \partial\!\!\!/ \nu_R - \underbrace{\bar{\nu}_R^c M_R \nu_R}_{2} - \bar{L}\tilde{H}Y_D \nu_R + \mathcal{L}_{\nu_R}^{(6)} + \mathcal{L}_{\nu_R}^{(7)}$$

 Majorana mass (L violating)

From heavy $\Delta L = 2$ physics

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{c_i^{(5)}}{\Lambda} O_i^{(5)} + \frac{c_i^{(7)}}{\Lambda^3} O_i^{(7)} + \frac{c_i^{(9)}}{\Lambda^5} O_i^{(9)} + \dots$$

Interactions involving light ν_R

- Can be described in the same framework (ν SMEFT):

$$\mathcal{L}_{\nu_R} = i\bar{\nu}_R \partial \!\!\!/ \nu_R - \underbrace{1}_{\nu_R} \partial \!\!/ \nu_R - \underbrace{1}_{\nu_R} \partial \!\!\!/ \nu_R - \underbrace{1}_{\nu_R} \partial \!\!/ \nu_R - \underbrace{1}_{\nu_R} \partial \!/ \nu_R - \underbrace{1}_{\nu_R} \partial \!$$

 Majorana mass (L violating) Dirac mass (L conserving)

From heavy $\Delta L = 2$ physics

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{c_i^{(5)}}{\Lambda} O_i^{(5)} + \frac{c_i^{(7)}}{\Lambda^3} O_i^{(7)} + \frac{c_i^{(9)}}{\Lambda^5} O_i^{(9)} + \dots$$

Interactions involving light ν_R

Low-energy operators

At/below the weak scale*

Low-energy operators

At/below the weak scale*

Low-energy operators

At/below the weak scale*

Matching to Chiral EFT

Warning: Based on NDA

Matching to Chiral EFT

Dimension-3

Warning: Based on NDA

Matching to Chiral EFT

Dimension-3

Warning: Based on NDA

Matching to Chiral EFT

Dimension-3

- At LO in Weinberg counting, only need the nucleon one-body currents
- All needed low-energy constants are known

W. Dekens, N3AS, 03/01

Chiral EFT

Chiral EFT

Nicholson et al.'18; Cirigliano et al. '17

Chiral EFT

Nicholson et al.'18; Cirigliano et al. '17

Chiral EFT

Kaplan, Savage, Wise, '96; Beane, Bedaque, Savage, van Kolck, '03, Nogga, Timmermans, van Kolck, '05, Long, Yang, '12;

Checking the power counting

Dimension-3

Check that $\mathcal{A}(nn \rightarrow ppee)$ is finite

Checking the power counting

Dimension-3

W. Dekens, N3AS, 03/01

Checking the power counting

Dimension-3

 \mathcal{N}

Dress the $\Delta L=2$ potential with (renormalized) strong interactions:

Checking the power counting

Dimension-3

Checking the power counting

Dimension-3

Checking the power counting

Dimension-3

Check that $\mathcal{A}(nn \to ppee)$ is finite • Requires inclusion of the strong interaction $\mathcal{L}_{\chi} = C \left(N^T P_{1S_0} N \right)^{\dagger} N^T P_{1S_0} N - \frac{g_A}{2F_{\pi}} \nabla \pi \cdot \bar{N} \tau \sigma N$

Dress the $\Delta L=2$ potential with (renormalized) strong interactions:

In MS-bar:

$$n \longrightarrow e^{p} = -\left(\frac{m_N}{4\pi}\right)^2 \left(1 + 2g_A^2\right) \frac{1}{2} \left(\log \frac{\mu^2}{-(|\mathbf{p}| + |\mathbf{p}'|)^2 + i0^+} + 1\right)$$

$$+\text{finite}$$
Regulator dependent

Numerical results

Need for a counter term

New interaction needed at leading order to get physical amplitudes:

Need for a counter term

New interaction needed at leading order to get physical amplitudes:

 $\begin{array}{ll} \bullet \ g_{\nu}^{NN} \ \text{to be determined from a lattice calculation of} & \mathcal{A}(nn \to ppe^-e^-) \\ \bullet \ \text{Area of active research} & & \\ \hline & \\ \text{Feng et al, '20} \end{array} \end{array}$

Need for a counter term

New interaction needed at leading order to get physical amplitudes:

W. Dekens, N3AS, 03/01

Chiral EFT

Non-Weinberg counting

Chiral EFT

Non-Weinberg counting affects higher dimensional interactions as well

Chiral EFT

Non-Weinberg counting affects higher dimensional interactions as well

Nuclear matrix elements

All NMEs can be obtained from literature*
 9 long-distance & 6 short-distance
 Have been determined in literature

Follow ChiPT expectations fairly well
E.g. all O(1) and

$$\begin{split} M_{GT,sd}^{PP} &= -\frac{1}{2} M_{GT,sd}^{AP} - M_{GT}^{PP} , \qquad M_{T,sd}^{PP} = -\frac{1}{2} M_{T,sd}^{AP} - M_{T}^{PP} , \\ M_{GT,sd}^{AP} &= -\frac{2}{3} M_{GT,sd}^{AA} - M_{GT}^{AP} , \qquad M_{GT}^{MM} = \frac{g_M^2 m_\pi^2}{6g_A^2 m_N^2} M_{GT,sd}^{AA} , \end{split}$$

NMEs		7	⁶ Ge					
	[74]	[31]	[81]	[82, 83]				
M_F	-1.74	-0.67	-0.59	-0.68				
M_{GT}^{AA}	5.48	3.50	3.15	5.06				1
M_{GT}^{AP}	-2.02	-0.25	-0.94	NMEs	76 Ge			
M_{GT}^{PP}	0.66	0.33	0.30	$M_{F, sd}$	-3.46	-1.55	-1.46	-1.1
M_{GT}^{MM}	0.51	0.25	0.22	$M^{AA}_{GT,sd}$	11.1	4.03	4.87	3.62
M_T^{AA}	-	_	-	$M^{AP}_{GT,sd}$	-5.35	-2.37	-2.26	-1.37
M_T^{AP}	-0.35	0.01	-0.01	$M^{PP}_{GT,sd}$	1.99	0.85	0.82	0.42
M_T^{PP}	0.10	0.00	0.00	$M^{AP}_{T,sd}$	-0.85	0.01	-0.05	-0.97
M_T^{MM}	-0.04	0.00	0.00	$M^{PP}_{T,sd}$	0.32	0.00	0.02	0.38

Nuclear matrix elements

*More complicated for NME with ν_R

- All NMEs can be obtained from literature*
 - 9 long-distance & 6 short-distance
 - Have been determined in literature
- Follow ChiPT expectations fairly well
 E.g. all O(1) and

$$\begin{split} M_{GT,sd}^{PP} &= -\frac{1}{2} M_{GT,sd}^{AP} - M_{GT}^{PP} , \qquad M_{T,sd}^{PP} = -\frac{1}{2} M_{T,sd}^{AP} - M_{T}^{PP} , \\ M_{GT,sd}^{AP} &= -\frac{2}{3} M_{GT,sd}^{AA} - M_{GT}^{AP} , \qquad M_{GT}^{MM} = \frac{g_M^2 m_\pi^2}{6g_A^2 m_N^2} M_{GT,sd}^{AA} , \end{split}$$

⁷⁶Ge NMEs [74][31] [81] [82, 83] M_F -1.74-0.67 -0.59-0.68 M_{GT}^{AA} 3.503.155.065.48⁷⁶Ge **NMEs** M_{GT}^{AP} -0.25-0.94-2.02 M_{GT}^{PP} 0.66 0.33 0.30 MF. sd. -3.46 -1.55 -1.46 -1.1 M_{GT}^{MM} $M_{GT, sd}^{AA}$ 0.250.220.5111.1 4.034.87 3.62 $M_{GT, sd}^{AP}$ M_T^{AA} -5.35-2.37 -2.26 -1.37 $M_{GT, sd}^{PP}$ M_T^{AP} 0.01 -0.01 -0.35 1.990.85 0.820.42 $M_{T,sd}^{AP}$ M_T^{PP} 0.10 0.00 0.00 -0.05-0.850.01-0.97 $M_{T,sd}^{PP}$ M_T^{MM} 0.00 0.00 -0.04 0.320.00 0.020.38

- The NMEs differ by a factor 2-3 between methods
- Ab initio NMEs for $A \ge 48$ are starting to appear
 - e.g. Belley et al '20; Yao et al '20; Wirth, Yao, Hegert '21

Barea et al. '15; Hyvarinen et al, '15; Horoi et al. '17, Menendez et al, '18

Sterile neutrinos

Sterile neutrinos

W. Dekens, N3AS, 03/01

Phenomenology

- O(1) uncertainties:
 - Unknown LECs
 - Nuclear Matrix elements

•

Phenomenology with sterile neutrinos

From heavy new physics + light ν_R

- Higher dimensional ν_R terms can have a large impact!

Summary

- Standard mechanism (dim-5)
- Dimension-7 & -9 sources
- Effects from ν_R

Summary

- EFTs allow one to systematically describe $\Delta L=2$ sources
 - Standard mechanism (dim-5)
 - Dimension-7 & -9 sources
 - Effects from ν_R
- Matching to chiral EFT involves unknown LECs
 - Renormalization requires terms beyond Weinberg counting
 - Can in principle be determined from LQCD
- Needed Nuclear Matrix Elements determined in literature

Summary

- EFTs allow one to systematically describe $\Delta L=2$ sources
 - Standard mechanism (dim-5)
 - Dimension-7 & -9 sources
 - Effects from ν_R
- Matching to chiral EFT involves unknown LECs
 - Renormalization requires terms beyond Weinberg counting
 - Can in principle be determined from LQCD
- Needed Nuclear Matrix Elements determined in literature
- $0\nu\beta\beta$ can probe
 - O(1-10) TeV scales for dim-9
 - O(100) TeV scales for dim-7
 - O(10) TeV scales for ν_R interactions
- Interplay with other observables (e.g. β decay)

W. Dekens, N3AS, 03/01

Back up slides

W. Dekens, N3AS, 03/01

Why dim 7, 9?

Effective Field Theory

Naive scaling of Dimension 5, 7, 9 operators

 $\sqrt{v/\Lambda} \ll$

$$\mathcal{A}_{0\nu\beta\beta} \sim \frac{c_5}{\Lambda} \left[1 + \left(\frac{v}{\Lambda} \right)^2 \frac{c_7}{c_5} + \left(\frac{v}{\Lambda} \right)^4 \frac{c_9}{c_5} \right]$$

So why keep dimension 7 & 9?

$$m_
u \sim c_5 v^2 / \Lambda$$
 Allows for relative enhancement:

•
$$c_5 \ll O(1), \qquad \Lambda = \mathcal{O}(1 - 100) \text{TeV}$$

• Relative enhancement of higher-dimensional terms due to $(c_{7,9}/c_5\gg 1)$

- Happens, for example, in the left-right model
- However, if c₅ = O(1), Λ = 10¹⁵ GeV
 dimension-7, -9 irrelevant in this case

W. Dekens, N3AS, 03/01

Sterile neutrinos

Sterile neutrinos

Complication: m_{ν_R} dependence

Estimating the contact interaction

Determination of the counterterm

Cirigliano, (WD) et al, '20, '21

Analogy to the Cottingham approach for pion/nucleon mass differences

$$\mathcal{A}_{\nu} \propto \int \frac{d^4k}{(2\pi)^4} \frac{g_{\mu\nu}}{k^2 + i\epsilon} \int d^4x \, e^{ik \cdot x} \langle pp|T\{j_{\rm w}^{\mu}(x)j_{\rm w}^{\nu}(0)\}|nn\rangle$$

$$\mathcal{A}_{\nu} = \underbrace{\prod_{n \to p}^{e}}_{e} \propto \int dk \, a(k) = \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2 + i\epsilon} \qquad \underbrace{\prod_{n \to p}^{e}}_{k \neq \frac{1}{2}}$$

- Estimate the A_{ν} by constraining the integrand
 - $k \ll \Lambda_{\rm y}$ region determined by $\chi \rm EFT$
 - $k \gg {\rm GeV}$ region determined by OPE
 - Model intermediate region using:
 - Form factors
 - Off-shell effects from $N\!N$ intermediate states

Determination of the counterterm

Cirigliano, (WD) et al, '20, '21

Analogy to the Cottingham approach for pion/nucleon mass differences

$$\mathcal{A}_{\nu} \propto \int \frac{d^4k}{(2\pi)^4} \frac{g_{\mu\nu}}{k^2 + i\epsilon} \int d^4x \, e^{ik \cdot x} \langle pp | T\{j_{\rm w}^{\mu}(x)j_{\rm w}^{\nu}(0)\} | nn \rangle$$

$$\mathcal{A}_{\nu} = \underbrace{\prod_{n \to p}^{e}}_{e} \propto \int dk \, a(k) = \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2 + i\epsilon} \qquad \underbrace{\prod_{n \to p}^{2\sqrt{k}}}_{k\sqrt{2\sqrt{k}}}$$

- Gives $\tilde{g}_{\nu}^{N\!N}(\mu=m_{\pi})=1.3(6)$ in $\overline{\rm MS}$
 - Estimated 30% uncertainty
 - Validated in isospin-breaking observables
 - Consistent with large-Nc estimate

Richardson et al, '21

The appearance of the photon propagator allows one to relate the two!

• Only two $\Delta I=2$ operators can be induced

$$O_{1} = \bar{N}\mathcal{Q}_{L}N\,\bar{N}\mathcal{Q}_{L}N - \frac{\operatorname{Tr}\mathcal{Q}_{L}^{2}}{6}\bar{N}\vec{\tau}N\,\bar{N}\vec{\tau}N + (L \to R)$$

$$O_{2} = \bar{N}\mathcal{Q}_{L}N\,\bar{N}\mathcal{Q}_{R}N - \frac{\operatorname{Tr}\mathcal{Q}_{L}\mathcal{Q}_{R}}{6}\bar{N}\vec{\tau}N\,\bar{N}\vec{\tau}N + (L \leftrightarrow R)$$

$$u = \exp\left(i\pi \cdot \tau/2F_{\pi}\right)$$
with spurions

$$u = \exp\left(i\pi \cdot \tau/2F_{\pi}\right)$$

• ΔI=2 in NN scattering

- Charge-independence breaking
- $(a_{nn} + a_{pp})/2 a_{np}$
 - From photon exchange & the pion mass difference
 - $C_1 + C_2$ (needed at LO in isospin breaking)

- Allows an estimate of $g_{
 u}^{NN}$
 - Extract $C_1 + C_2$ from CIB

• Assume
$$g_{\nu}^{NN}(\mu) = \frac{C_1(\mu) + C_2(\mu)}{2}$$

- Roughly 10% effect for Rs = 0.6 fm
- Uncontrolled error

Estimate of impact in light nuclei

Estimate of impact

Light nuclei

M. Piarulli, R. Wiringa, S. Pastore

- Combine estimate $g_{\nu} = (C_1 + C_2)/2$
- With wavefunctions:
 - From Chiral potential M. Piarulli et. al. '16
 - Obtained from AV18 potential R. Wiringa, Stoks, Schiavilla, '95
 - ~10% effect in $^{6}\text{He} \rightarrow ^{6}\text{Be}$
 - ~60% effect in ¹²Be \rightarrow ¹²C
 - Due to presence of a node
 - Feature in realistic 0vββ candidates

