MICHIGAN STATE UNIVERSITY

[A. Watts]

Christian Drischler

October 21, 2021 | N3AS: Biweekly Neutron Star Merger Meetings

These *biweekly meetings* aim to bring together researchers working on neutron star mergers.

Topics will include:

- computational astrophysics,
- dense matter physics,
- gravitational waves and data analysis,
- neutrino and particle astrophysics.

Meetings will include a 30-40 min talk on a related topic, and 20-30 minutes of discussion...

Today:

- + Chiral EFT + MBPT
- + Bayesian UQ
- + infinite nuclear matter
- + symmetry energy
- + nuclear saturation
- + N³LO NN + 3N forces

see also Jeremy Holt's talk (November 4) Equation of State of Dense Matter at Finite Temperature

+ ...

Recent review article

MICHIGAN STATE UNIVERSITY

Equation of State C. Drischler,^{1,2,3} J. W. Holt,⁴ and C. Wellenhofer,^{5,6}

¹Department of Physics, University of California, Berkeley, California 94720, USA

CD, Holt, and Wellenhofer, ARNPS 71, 403

²Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

³Facility for Rare Isotope Beams, Michigan State University, Michigan 48824, USA: email: drischler@frib.msu.edu

⁴Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA; email: holt@physics.tamu.edu ⁵Institut f
ür Kernphysik, Technische Universit
ät Darmstadt, 64289 Darmstadt, Germany; email: wellenhofer@theorie.ikp.physik.tu-darmstadt.de

⁶ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany

Chiral Effective Field

High-Density Nuclear

Theory and the

invited contribution to Annu. Rev. Nucl. Part. Sci. 71, 403 see also: Lattimer, Annu. Rev. Nucl. Part. Sci. 71, 433

Keywords

chiral effective field theory, nuclear matter, neutron stars, many-body perturbation theory, bayesian uncertainty quantification

Abstract

October 21, 2021 | N3AS: Biweekly Neutron Star Merger Meetings | Christian Drischler | 2

Annu. Rev. Nucl. Part. Sci. in press.

MICHIGAN STATE

Ab initio calculations | outline

nuclear equation of state neutron matter | symmetric matter

many-body perturbation theory

computationally efficient many-body uncertainty estimates

chiral effective field theory

systematic expansion of nuclear forces truncation error estimates

MICHIGAN STATE UNIVERSITY

Ab initio calculations | outline

nuclear equation of state neutron matter | symmetric matter

many-body perturbation theory

computationally efficient many-body uncertainty estimates

chiral effective field theory

systematic expansion of nuclear forces truncation error estimates

Microscopic nuclear forces

e.g., Machleidt, Entem, Phys. Rep. 503, 1

MICHIGAN STATE

UNIVERSITY

Chiral EFT: modern approach to deriving *microscopic* nuclear forces consistent with the symmetries of low-energy QCD

 use relevant instead of the fundamental degrees of freedom: *e.g.*, **nucleons** and **pions**

Microscopic nuclear forces

e.g., Machleidt, Entem, Phys. Rep. 503, 1

MICHIGAN STATE

UNIVERSITY

Expansion

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Krebs, Machleidt, Meißner, ...

October 21, 2021 | N3AS: Biweekly Neutron Star Merger Meetings | Christian Drischler | 6

Chiral EFT: modern approach to deriving *microscopic* nuclear forces consistent with the symmetries of low-energy QCD

- use relevant instead of the fundamental degrees of freedom: *e.g.*, **nucleons** and **pions**
- pion exchanges and short-range contact interactions (∝ LECs)
- systematic expansion enables improvable uncertainty estimates

$$Q = \max\left(\frac{p}{\Lambda_b}, \frac{m_{\pi}}{\Lambda_b}\right) \ge \frac{1}{3}$$

Hierarchy of nuclear forces in chiral EFT

e.g., Machleidt, Entem, Phys. Rep. 503, 1

MICHIGAN STATE

UNIVERSITY

Many-body forces

Expansion

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Krebs, Machleidt, Meißner, ...

MICHIGAN STATE

Many chiral potentials available!

Hoppe, CD, Furnstahl et al., PRC 96, 054002

MICHIGAN STATE UNIVERSITY

Outline

CD & Bogner, Few Body Syst. 62, 109

many-body perturbation theory

computationally efficient many-body uncertainty estimates

chiral effective field theory

systematic expansion of nuclear forces truncation error estimates

MICHIGAN STATE UNIVERSITY

Efficient Monte Carlo framework

CD, Hebeler, Schwenk, PRL 122, 042501

efficient evaluation of MBPT diagrams with NN, 3N, and 4N forces (single-particle basis)

- implementing diagrams has become straightforward (incl. particle-hole terms)
- multi-dimensional momentum integrals: (improved) VEGAS algorithm
- acceleration: openMP, MPI, and CUDA
- controlled computation of arbitrary interaction and many-body diagrams

improved sampling: Brady, Wen, and Holt, PRL **127**, 062701

High-order MBPT

Stevenson, Int. J. Mod. Phys. C 14, 1135

MICHIGAN STATE

UNIVERSITY

The number of diagrams increases rapidly!

Integer sequence A064732:

Number of labeled Hugenholtz diagrams with *n* nodes.

ADG: Automated generation and evaluation of many-body diagrams I. Bogoliubov many-body perturbation theory

Pierre Arthuis, Thomas Duguet, Alexander Tichai, Raphaël-David Lasseri, Jean-Paul Ebran Comput. Phys. 240, 202

fully automated approach to MBPT

MICHIGAN STATE

Outline

CD & Bogner, Few Body Syst. 62, 109

nuclear equation of state neutron matter | symmetric matter

many-body perturbation theory

computationally efficient many-body uncertainty estimates

chiral effective field theory

systematic expansion of nuclear forces truncation error estimates

MICHIGAN STATE UNIVERSITY

Nuclear matter calculations

e.g., Hebeler, Holt et al., ARNP 65, 457

great progress in predicting the **EOS** of infinite matter and the structure of **neutron stars** at densities $\leq n_0$

October 21, 2021 | N3AS: Biweekly Neutron Star Merger Meetings | Christian Drischler | 13

MICHIGAN STATE

Nuclear matter calculations

e.g., Hebeler, Holt et al., ARNP 65, 457

great progress in predicting the **EOS** of infinite matter and the structure of **neutron stars** at densities $\leq n_0$

Hebeler, Lattimer *et al.*, APJ **773**, 11 Carbone, Rios *et al.*, PRC **88**, 044302 Hagen, Papenbrock *et al.* PRC **89**, 014319

needed: statistically robust comparisons between nuclear theory and recent observational constraints

> Lonardoni, Tews *et al.*, PRR **2**, 022033(R) Piarulli, Bombaci *et al.*, PRC **101**, 045801

But: existing predictions only provided rough estimates for the with-densitygrowing EFT truncation error, and did *not* account for correlations

New framework for UQ of EFT calculations

MICHIGAN STATE UNIVERSITY

buqeye.github.io

CD, Furnstahl, Melendez, and Phillips

How well do we know the neutron-matter equation of state at the densities inside neutron stars? A Bayesian approach with correlated uncertainties, PRL **125**, 202702

CD, Melendez, Furnstahl, and Phillips

Effective Field Theory Convergence Pattern of Infinite Nuclear Matter, PRC **102**, 054315

> See also: Melendez *et al.*, PRC **100**, 044001 Wesolowski *et al.*, JPG **43**, 074001

Bayesian Uncertainty Quantification: Errors for Your EFT

UQ framework available at <u>https://buqeye.github.io</u>

New framework for UQ of EFT calculations

MICHIGAN STATE

buqeye.github.io

CD, Furnstahl, Melendez, and Phillips

Effective Field Theory Convergence Pattern of Infinite Nuclear Matter, PRC **102**, 054315

> See also: Melendez *et al.*, PRC **100**, 044001 Wesolowski *et al.*, JPG **43**, 074001

UQ framework available at <u>https://buqeye.github.io</u>

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Krebs, Machleidt, Meißner, ...

predict observable y_k order by order in EFT

$$y_k = y_{ ext{ref}} \sum_{n=0}^k c_n Q^n$$

c_n are not the EFT's LEC

treat all *c_n* as independent draws from a Gaussian Process

learn GP's hyperparameters & infer EFT truncation error

$$\delta y_k = y_{ ext{ref}} \sum_{n=k+1}^\infty c_n Q^n$$

geometric sum

For example: $y_k = E/A$ in SNM at chiral order k

Propagating type-*x* uncertainties

CD, Melendez *et al.*, PRC **102**, 054315

Bayesian inference

CD, Melendez et al., PRC 102, 054315

MICHIGAN STATE

UNIVERSITY

Bayesian inference

CD, Melendez et al., PRC 102, 054315

MICHIGAN STATE

UNIVERSITY

MICHIGAN STATE

Parameters of the low-density EOS

CD, Holt, and Wellenhofer, ARNPS. 71, 403

FFG: free Fermi gas; $\delta = (n_n - n_p)/n$: isospin asymmetry

MICHIGAN STATE

Parameters of the low-density EOS

CD, Holt, and Wellenhofer, ARNPS. 71, 403

MICHIGAN STATE

Confronting chiral EFT with empirical constraints CD, Furnstahl et al., PRL 125, 202702

$$S_2(n) \approx \frac{E}{N}(n) - \frac{E}{A}(n)$$

MICHIGAN STATE

Confronting chiral EFT with empirical constraints CD, Furnstahl et al., PRL 125, 202702

$$S_2(n) \equiv S_v + rac{L}{3} \left(rac{n-n_0}{n_0}
ight) + \dots$$

Excellent agreement with experiment Lattimer and Lim, APJ 771, 51 $pr(S_v, L \mid D) = \int dn_0 pr(S_2, L \mid n_0, D) pr(n_0 \mid D)$ $pr(n_0 \mid D) \approx 0.17 \pm 0.01 \text{ fm}^{-3}$

 2σ ellipse (light yellow) is completely within the *conjectured* unitary gas limit

predicted range in S_v agrees with other theoretical constraints; but ~15 MeV stronger density-dependence of $S_2(n_0)$

GP–B (500): two-dimensional Gaussian

$$\begin{bmatrix} \mu_{S_v} \\ \mu_L \end{bmatrix} = \begin{bmatrix} 31.7 \\ 59.8 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} 1.11^2 & 3.27 \\ 3.27 & 4.12^2 \end{bmatrix}$$

Compilation of recent terrestrial and astrophysical **constraints on S_v and** *L*

 $\Sigma =$

 1.11^{2}

3.27

3.27

31.7

 μ_{S_v}

MICHIGAN STATE UNIVERSITY

PREX–II vs theory and observation

see also Yue et al., arXiv:2102.05267

Take away from PREX-II-informed results:

- uncertainties are still large
- allows for stiffer EOS at ~n₀, but within the large uncertainties consistent with chiral EFT
- tension between A_{PV} and α_D

Parity violating elastic e scattering $R_{\rm skin} \left({}^{208} {\rm Pb} \right) = 0.283 \pm 0.071 \, {\rm fm}$ PREX collaboration, PRL **126**, 172502

Exploiting strong correlations (EDFs)

 $S_v = 38.1 \pm 4.7 \,\mathrm{MeV}$ $L = 105.9 \pm 36.9 \,\mathrm{MeV}$

Reed et al., PRL 126, 172503

Astron. data + chiral EFT only (incl. GP-B)

 $R(^{208}\text{Pb}) = 0.18^{+0.04}_{-0.04} \text{ fm}$ $S_v = 34^{+3}_{-2} \text{ MeV} \quad L = 52^{+20}_{-18} \text{ MeV}$

Essick et al., arXiv:2102.10074

Different EDFs (closest to RCNP & PREX)

 $R(^{208}\text{Pb}) = 0.19 \pm 0.02 \,\text{fm}$

 $S_v = 32 \pm 1 \,\mathrm{MeV}$ $L = 54 \pm 8 \,\mathrm{MeV}$

Reinhard, Roca-Maza et al., arXiv:2105.15050

October 21, 2021 | N3AS: Biweekly Neutron Star Merger Meetings | Christian Drischler | 26 see also: Piekarewicz, PRC 104, 024329

PREX–II vs theory and observation

see also Yue et al., arXiv:2102.05267

Take away from PREX-II-informed results:

- uncertainties are still large
- allows for stiffer EOS at ~n₀, but within the large uncertainties consistent with chiral EFT
- tension between A_{PV} and α_{D}

Parity violating elastic e scattering $R_{\rm skin} \left({}^{208}{\rm Pb} \right) = 0.283 \pm 0.071 \, {\rm fm}$ PREX collaboration, PRL **126**, 172502

Exploiting strong correlations (EDFs)

 $S_v = 38.1 \pm 4.7 \,\mathrm{MeV}$ $L = 105.9 \pm 36.9 \,\mathrm{MeV}$

Reed et al., PRL 126, 172503

Astron. data + chiral EFT only (incl. GP-B)

 $R(^{208}\text{Pb}) = 0.18^{+0.04}_{-0.04} \text{ fm}$ $S_v = 34^{+3}_{-2} \text{ MeV} \quad L = 52^{+20}_{-18} \text{ MeV}$

Essick et al., arXiv:2102.10074

Different EDFs (closest to RCNP & PREX)

 $R(^{208}\text{Pb}) = 0.19 \pm 0.02 \,\text{fm}$

 $S_v = 32 \pm 1 \,\mathrm{MeV}$ $L = 54 \pm 8 \,\mathrm{MeV}$

Reinhard, Roca-Maza et al., arXiv:2105.15050

October 21, 2021 | N3AS: Biweekly Neutron Star Merger Meetings | Christian Drischler | 27 see also: Piekarewicz, PRC 104, 024329

PREX–II vs theory and observation

see also Yue et al., arXiv:2102.05267

Take away from PREX-II-informed results:

- uncertainties are still large
- allows for stiffer EOS at ~n₀, but within the large uncertainties consistent with chiral EFT
- tension between A_{PV} and α_D

Different EDFs (closest to RCNP & PREX)

 $R(^{208}\text{Pb}) = 0.19 \pm 0.02 \,\text{fm}$

 $S_v = 32 \pm 1 \,\mathrm{MeV}$ $L = 54 \pm 8 \,\mathrm{MeV}$

Reinhard, Roca-Maza et al., arXiv:2105.15050

October 21, 2021 | N3AS: Biweekly Neutron Star Merger Meetings | Christian Drischler | 28 see also: Piekarewicz, PRC 104, 024329

Nonquadratic contributions to the nuclear symmetry energy

Kaiser, PRC **91**, 065201 Wellenhofer, Holt, and Kaiser, PRC **93**, 055802 Somasundaram, CD, Tews *et al.*, PRC **103**, 045803

$$\frac{E}{A}(n,\delta) = \frac{E}{A}(n,\delta=0) + S_2(n)\delta^2 + \sum_{i>1} (A_{2i}(n)) \delta^{2i}$$

Nonquadratic contributions to the nuclear symmetry energy

Kaiser, PRC **91**, 065201 Wellenhofer, Holt, and Kaiser, PRC **93**, 055802 Somasundaram, CD, Tews *et al.*, PRC **103**, 045803

$$\frac{E}{A}(n,\delta) = \frac{E}{A}(n,\delta=0) + S_2(n)\delta^2 + \sum_{i>1} (A_{2i}(n)) \delta^{2i}$$

MBPT beyond Hartree-Fock gives rise to (nonanalytic) logarithmic contributions

Precision MBPT calculations can **extract** high-order symmetry energy **coefficients**

Overall small contribution from nonquadratic terms (but can impact β-equilibrium)

Direct correspondence: *M*–*R* relation and EOS

Limiting neutron star radii

CD, Han, Lattimer et al., PRC 103, 045808

Limiting neutron star radii

CD, Han, Lattimer et al., PRC 103, 045808

MICHIGAN STATE UNIVERSITY

New developments: symmetric nuclear matter

Functional Renormalization Group: *complementary* constraints at > $3n_0$ (beyond the range of chiral EFT) from the QCD action New insights into the high-density EOS: remarkable consistency between the constraints, which suggests that they can be combined via simple extrapolations

+ LIGO + Virgo + GEO600 + KAGRA

What is the secondary object in GW190425 and GW190814

Summit @ Oak Ridge 122.3 peta flops

+ STROBE-X

eXTP

#1 (U.S

CER

275

MICHIGAN STATE UNIVERSITY

Conclusion

Microscopic EOS constraints | *statistically* robust uncertainties

- excellent agreement of predicted S_v -L correlation with experiment
- PNM and SNM show a regular EFT convergence pattern with increasing order
- extracted Λ_b is consistent with NN scattering N²LO coefficient may be an outlier

full Bayesian UQ: sample over LECs & hyperparameters

- in future: include consistently uncertainties in the LECs of chiral interactions
- promising: new potentials up to N²LO by Wesolowski et al., arXiv:2104.04441

thanks to my collaborators:

R. Furnstahl J. Melendez K. McElvain D. Phillips S. Han J. Lattimer M. Prakash S. Reddy T. Zhao

MICHIGAN STATE

۰.

Equation of State of Dense (Neutron-rich) Matter at Zero Temperature

Key questions for *ab initio* many-body theory

CD & Holt, PAX-VII Workshop

How can neutron star observations help improve nuclear effective field theories

