### **Transport in Neutron Star Mergers**

Alexander Haber

in collaboration with Mark Alford, Steven Harris (@INT), Ziyuan Zhang



Alford, A.H., Harris, Zhang, arXiv:2108.03324 Alford, A.H., arXiv:2009.05181, Alford et.al., 1707.09475 N3AS seminar September 21st, 2021



### Question of the day:

How can we use transport in neutron star mergers to study the QCD phase diagram ?

#### Answer:

- Build better gravitational wave detectors
- Improve microscopic physics in merger simulations
- Need to re-evaluate our T = 0 wisdom

### Introduction & Motivation

- 1. Neutron star merger and the study of dense matter
- 2. Gravitational waves: simulations and measurement
- 3. Thermodynamics of neutron star merger
- 4. Relevant transport properties ?

### Results

- 1. Bulk viscosity
- 2. Chemical equilibrium in mergers

### Summary & Outlook

R. HURT/CALTECH-JPL



### Outline

# QCD Phase Diagram I

- 3
- Ultimate goal: understanding the phase diagram of fundamental matter as described by quantum chromodynamics (QCD)

"bolder" version

Various features and regions

conservative version



### QCD Phase Diagram II How can we attack the QCD phase diagram



- Investigation of the phase diagram can be experimental or theoretical (in reality always a mix)
- Huge range of thermodynamic parameters (T,  $n_B$ ,  $x_n$ , B, particle content) ...



 Perturbative QCD at high densities/temperatures (μ, T ≫ Λ<sub>QCD</sub>)

- Lattice QCD at low densities (μ ≪ T - "sign problem")
- Nuclear theory at liquid-gas transition
- Experiments for nuclear and hyperonic matter
- Collider experiments (RHIC, LHC, PANDA, NICA)
- Neutron stars (NS) and binary NS merger

5

- Binary neutron star merger can be observed via electromagnetic and gravitational waves
- Offer a new way to study dense matter (nuclear, quark, exotic)



- Merger test matter at densities up to several times saturation density and tens of MeV of temperature
- Inferring properties of dense matter from gravitational waves is challenging
- Unique opportunity to test matter in one of the most extreme environments imaginable

By University of Warwick/Mark Garlick, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=63436916

## Gravitational Waves



- BNS (inspiral) can be detected with current detectors (GW170817 and GW190425)
- Signal can be very noisy requires simulation of wave form
- Simulations provide us thermodynamic input and allow us to extract microscopic properties of matter





#### Alexander Haber | Washington University in Saint Louis

#### B. P. Abbott et al. (LIGO and Virgo Collaboration)



Simulations take into account (most) of the following:

- General Relativity: Basis of simulations is evolving spacetime metric throughout the merger using Einstein's equations of GR
- Relativistic Hydrodynamics: Matter compromising the stars is modeled as "perfect fluid" (no true viscosity, numerical viscosity can be a problem)
- Equation of state P(ε): Equation of state describes behavior and composition of matter, often simple model equations, not fundamental
- Electrodynamics: Magnetic fields can influence the development of the merger
- ► Neutrino transport: Behavior of neutrinos depends on temperature



- Simulations = numerical (general) relativity + relativistic hydrodynamics
- → Simulations = technically hard + sophisticated ...
- ... but necessarily neglect a lot of physics
- Improvements necessary, especially if we want to learn as much as possible from post-merger phase

### But where to start?

# Neutron Star Merger

9



- Significant spatial and temporal variation in
  - temperature  $\rightarrow$  thermal conductivity
  - fluid flow velocity  $\rightarrow$  shear viscosity
  - ► density → bulk viscosity
- (Strong) density fluctuations with
  - $\omega \approx 2\pi \times 1$  kHz frequency
  - especially in the first 5 ms
  - up to 50% amplitude
  - largely die down after 20 ms
- ? Which processes operate on merger time scales (ms range)?

Better discriminator of different phases than EOS

# 10

### Premise

The important dissipation mechanisms are the ones whose equilibration time is  $\lesssim$  20ms

### Estimates for transport properties: Alford, Bovard, et.al. PRL 120 (2018)

• Thermal transport: 
$$\tau_{\kappa}^{\nu} \approx 0.7 \,\mathrm{s} \times \left(\frac{0.1}{x_{\rho}}\right)^{1/3} \left(\frac{m_{n}^{*}}{0.8m_{n}}\right)^{3} \left(\frac{\mu_{\theta}}{2\mu_{\nu}}\right)^{2} \left(\frac{z_{\mathrm{typ}}}{1\,\mathrm{km}}\right)^{2} \left(\frac{T}{10\,\mathrm{MeV}}\right)^{2}$$

- $\rightarrow$  might be fast enough if
  - neutrinos are trapped (T > 5 MeV)
  - $\blacktriangleright\,$  there are short-distance temperature gradients on  $\approx$  0.1 km scale
- Shear viscosity similar conclusion
- Bulk viscosity potentially important: large enough for significant damping of oscillations in millisecond time-range?

#### Nuclear Bulk Viscosity neutrino trapped vs. free-streeming



- ► Nuclear bulk viscosity in neutrino-transparent matter ( $T \leq 5$  MeV): Alford, Harris, Phys.Rev. C100 (2019): millisecond damping times
- ► Nuclear bulk viscosity in neutrino-trapped matter (*T* ≥ 10 MeV): Alford, Harutyunyan, Sedrakian Phys.Rev.D100 (2019): rates too fast → low bulk viscosity



Alexander Haber | Washington University in Saint Louis

# Hyperonic Bulk Viscosity

12

- Hyperon bulk viscosity for non-leptonic processes : Alford, A.H. 2009.05181: millisecond damping times only at keV temperatures
- Hyperonic rates at higher temperatures too fast for sizeable bulk-viscosity





- Beta-equilibrium = chemical equilibrium: composition of matter (e.g. proton fraction) stays constant with time
- "Chemical composition" (particle fractions) change via weak interactions

beta equilibrium: neutron decay and electron capture balance

 $n + \cdots \rightarrow p + e^- + \dots$   $p + e^- + \cdots \rightarrow n + \cdots$ 

- Above  $T \gtrsim 10$  MeV, neutrinos are trapped
- ▶ In this talk: work in neutrino free-streaming regime:  $\mu_{\nu} = \mu_{\bar{\nu}} = 0$

If rates **balance** and are **inverse** to each other:

### cold beta equilibrium: correct at T = 0

 $\mu_{n} = \mu_{p} + \mu_{e}$ 

#### ? Still valid at moderate, finite temperatures ?

Weak semi-leptonic decays in dense matter

### direct Urca (dU)

neutron decay:  $n \rightarrow p + e^- + \bar{\nu}_e$  electron capture:  $p + e^- \rightarrow n + \nu_e$ 

$$\Gamma_{
m dU,nd} \propto \int d^{12} p \, |M|^2 \, f_n (1-f_e) (1-f_p) \, \delta^4 (4-{
m mom\,cons.})$$

- Dominated by particles on their Fermi surface (FS)
- ► Momentum conservation on FS demands  $\vec{k}_{Fn} \leq \vec{k}_{Fp} + \vec{k}_{Fe}$
- If momentum cons. on FS not possible: rate heavily suppressed
- Momentum conservation can be achieved via spectator nucleon N

### modified Urca (mU)

neutron decay:  $n + N 
ightarrow p + e^- + ar{
u}_e + N$ 

electron capture  $p + e^- + N 
ightarrow n + 
u_e + N$ 





### **Direct Urca Threshold**

Property of the equation of state



charge neutrality requires  $n_e = n_p$  so at T = 0:  $k_{Fp} = k_{Fe}$ 

### direct Urca threshold:

$$k_{Fn} = k_{Fp} + k_{Fe}$$

- dU requires higher proton fraction
- Nearly all equation of states (EOS) have monotonically rising proton fraction with n<sub>B</sub>
- Compare two different EOS (relativistic mean field models-RMF): IUF and SFHo
- IUF: direct Urca threshold at  $n_B \approx 4.1 n_0$



### Non-relativistic expansion



 $\sqrt{k^2 + m_n^{*2}} \approx m_n^* + k^2/(2m_n^*) + ...$  requires  $k_{Fn}/m_n^* \ll 1$ 

- In-medium nucleon mass drops quickly with density in RMFs (however:PRC 100, 065807 (2019))
- Neutrons become fully relativistic between  $2 3 n_0$
- Protons become fully relativistic between  $3-6 n_0$

## Total Urca in Cold Beta-Equilibrium T = 3 MeV - neutrino transparent





- ► IUF-results show clear dU threshold
- Electron-capture and neutron-decay differ by 1 – 2 orders of magnitude
- Cold beta-equilibrium clearly violated

### Reason:

electron-capture and neutron-decay are not inverse processes: neutrino switches side

### Warm Beta Equilibrium





Corrected Rates for IUF EOS at T = 3 MeV





direct Urca electron capture dominates over modified Urca

### Summary & Outlook

# 20

### Summary

- Need to improve microphysics in simulations
- Bulk viscosity might play an important role in BNS merger
- Traditional beta-equilibrium is violated for temperatures in the few MeV range
- $\mu_{\delta}$  reaches up to 15 MeV
- Direct Urca can dominate over modified Urca even below threshold

### Thank you for your attention!

### Outlook

- Incorporate viscosity in merger simulations
- Effect of  $\mu_{\delta}$  on cooling?
- Effect of  $\mu_{\delta}$  on bulk viscosity?

• • • •