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saturation density

n0 ≈ 0.16 nucleons/fm3

ρ0 ≈ 2.7× 1014 g/cm3



Introduction Equation of state (EOS) of dense matter Twin stars Stability: the turning point theorem Methods Results: Non-rotating models Results: Rotating models Conclusion

DENSE MATTER EOS

The problem is usually approached by treating the hadronic and quark phases under separate models

2

One then interpolates between the two phases and matches the EOSs under some construction
2Baym et al., Rept.Prog.Phys. 81 (2018) 5, 056902
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HADRONIC EOS

7

Many-body approach
– Use understanding of symmetric nuclear/ pure neutron
matter at n0

– Determine nucleon-nucleon potentials from scattering
data associated with symmetric nuclei
– Solve many-body Schrödinger equation in the presence of
these potentials
– Expand in terms of proton fraction

EB(x,nB) ≈ E(0,nB)− 4(1− x)nBSB + · · · , (1)

Relativistic mean-field approach
Write down EFT including relevant d.o.f (nucleons, electrons,
muons, ...) interacting via exchange of mesons (scalar,
vector, ...)

L = ψ̄(iγµ∂µ − mB)ψ + gσσψ̄ψ − gωψ̄γµωµψ + · · · (2)

Next, integrate out mediators. Assuming the mediator fields
can be replaced with their mean field (static values) and
extract an EOS

Tµν =
∂L

∂(∂µϕα)
∂νϕα − gµνL (3)
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QUARK EOS
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Bag models:
Treat entire quark phase as a bag of non-interacting quarks.
Takes into accound the bare quark kinetic energy density εQ
(non- interacting Fermi gas) and the bag constant B.

εQ = 2ncnf

∫ pF

0

d3p
(2π3)

|p| (4)

Bag constant B: difference in energy density between
non-perturbative (QCD ground state) and perturbative
(devoid of all particles and condensates) vacua. Total energy
density is then

ε = εQ + B (5)

Relativistic mean-field approach
(Nambu-Jona-Lasinio models)
Write down EFT including relevant d.o.f (quarks) interacting
via exchange of particles (scalar, vector, ...)

L = q̄(iγµ∂µ − mq + µqγ
0)q + L(4) + L(6) (6)

Extract EOS in mean-field approach
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FROM HADRONS TO QUARKS

Many interpolation techniques, e.g.: high-order polynomial interpolation, spectral expansions, ...

9

Maxwell construction:
Impose local charge neutrality within the system. This leads
to strict separation of phases (sharp interface between
quark and hadronic regions). Transition is isobaric and can
happen over a finite range in densities, defined by

PH(µH
B , µ

H
e ) = PQ(µQ, µQ

e ) (7)

µH
B = 3µQ (8)

µe is discontinuous across interface

Gibbs construction
Impose global charge neutrality over entire system (quarks +
hadrons). Allows for mixed phase regions. all quantities are
continuous accross the transition

PH(µH
B , µ

H
e ) = PQ(µQ, µQ

e ) (9)

µH
B = 3µQ (10)

µH
e = µQ

e (11)



Introduction Equation of state (EOS) of dense matter Twin stars Stability: the turning point theorem Methods Results: Non-rotating models Results: Rotating models Conclusion

OBSERVATIONAL CONSTRAINTS

3

3Annala et al., arXiv:2105.05132v2 (2021)
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HYBRID STARS -- THE THIRD FAMILY OF COMPACT STARS
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INTRODUCTION
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First family: White dwarfs
M : 0.3− 1.0M⊙
R : 7000 km
C ∼ 0.0001

Second family: Neutron stars
M : 1.0− 2.0M⊙
R : 10− 15 km
C ∼ 0.2

Third family: Hybrid stars
M ≳ MNS
R ≲ RNS
C ≳ CNS

4K. Schertler et al., Nucl. Phys. A677 (2000) 463, [astro-ph/0001467] 13
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stars of the same mass can
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Second family: Neutron stars
M : 1.0− 2.0M⊙
R : 10− 15 km
C ∼ 0.2

Third family: Hybrid stars
M ≳ MNS
R ≲ RNS
C ≳ CNS
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TURNING POINT THEOREM
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6K. Schertler et al., Nucl. Phys. A677 (2000) 463, [astro-ph/0001467]
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UNSTABLE TWIN STARS
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UNSTABLE TWIN STARS

For a sequence of stars of constant entropy S and angular momentum J, instability to radial perturbations arises when

∂M
∂ϵc

∣∣∣∣∣
S,J

≤ 0 (12)
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UNSTABLE TWIN STARS

The fate of twin stars on the unstable branch

Hybrid hadron-quark stars with the same mass as neutron
stars, but with different radii.

The turning point-theorem indicates that starswhich satisfy

∂M
∂ϵc

∣∣∣∣∣
J,S

≤ 0,

are susceptible to radial instabilities

18
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QUESTIONS

Some questions we are interested in answering:

•What dynamics can we expect from the evolution of unstable branch hybrid twin stars?

• Does the evolution preferably go toward the hadronic branch? hybrid branch?

•What gravitational wave signals can we expect from the evolution of unstable branch hybrid twin stars?

19



METHODS



Introduction Equation of state (EOS) of dense matter Twin stars Stability: the turning point theorem Methods Results: Non-rotating models Results: Rotating models Conclusion

METHODS: GENERAL

•We consider parametrizations of two hybrid hadron-quark descriptions of the dense matter EOS.
· we use a piecewise polytropic fit of the P(ρ) functional for each of these EOSs, ensuring that stellar properties are
largely unchanged
· Using these finite sound speed versions of the EOS alleviates problems associated with the numerical evolution of
fluid with cs = 0

c2s ≡ ∂P/∂ϵ

•We construct stars with different amounts of rotation to cover as much of the solution space as possible.
•We evolve these initial data using 3D general relativistic hydrodynamics while inciting different radial perturbations.

21
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METHODS: RADIAL PERTURBATIONS

•We begin all evolutions in one of three ways:

· Equilibrium evolution: no radial perturbations are explicitly excited at the start of evolution
· Positive pressure perturbation: a radial perturbation is excited by increasing the pressure everywhere in the star by a
small amount.
· Negative pressure perturbation: a radial perturbation is excited by decreasing the pressure everywhere in the star by
some amount. The pressure perturbations take the following form

P(t = 0, x) −→ (1 + ξ)P(t = 0, x), (13)

where x indicates the spatial coordinates, and ξ is a small number that can be either positive or negative in cases
where we add or deplete pressure, respectively.

22
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METHODS: INITIAL DATA
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Introduction Equation of state (EOS) of dense matter Twin stars Stability: the turning point theorem Methods Results: Non-rotating models Results: Rotating models Conclusion

NON-ROTATING MODELS: EQUILIBRIUM EVOLUTION AND POSITIVE PRESSURE PERTURBATION

• The model initially contracts, leading to amomentary collapse and increasing in size of the quark core.
• As more matter enters the deconfined phase with relatively high pressure, the collapse is halted and the model
reverts into expansion.
• Eventually the model settles close to the the twin star at lower densities.

25
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NON-ROTATING MODELS: EQUILIBRIUM EVOLUTIONS AND POSITIVE PRESSURE PERTURBATIONS

Equilibrium
_ _ _ _ _ Positive pressure perturbation
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NON-ROTATING MODELS: PRESSURE DEPLETION
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ROTATING MODELS: PRESSURE DEPLETION

Equilibrium
_ _ _ _ _ Negative pressure perturbation
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ROTATING MODELS: GRAVITATIONAL RADIATION

Equilibrium
_ _ _ _ _ Negative pressure perturbation
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ROTATING MODELS: DETECTABILITY OF GWS
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• At dsource = 10 kpc, assuming an ideal detector orientation, the gravitational waves associated with the transition
from an unstable hybrid star to a stable hadronic star are detectable.
• Likely progenitors of unstable branch hybrid stars are core-collapse supernovae (CCSN) or white dwarf- neutron star
mergers. Each of these progenitor systems are expected to produce GWs which peak at lower
frequencies:

fCCSN
peak ∼ 1 kHz fWDNS

peak ∼ 0.01− 0.1 Hz
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SUMMARY

We have explored the stability of hybrid hadron-quark stars on the unstable branch:

→ Unstable branch hybrid twin stars migrate toward the stable neutron star branch:
→ we tested stars accross two EOSs, which sample the wide range of viable hybrid hadron quark stars
→ we consider several perturbations of different sizes

→ In the time they transition to the stable neutron star branch, the stars undergo strong radial oscillations.

→ Rotating hybrid stars on the unstable branch may produce detectable GW bursts for close-by sources.
→ Future work:

→ inducing strong radial oscillations in hybrid stars in dynamical capture binaries (e.g. consider eccentric hybrid star mergers)
→ exciting strong radial oscillations/phase transitions in WDNS binaries. Considering GW signal at different frequencies.
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BONUS: TURNING POINT THEOREM

→ LetM be a manifold of “all possible configurations and states” of a system

→ S and E are C3 functions onM
→ Equilibria: X are points inM at which S is an extremum with respect to infinitesimal variations dX along which

dE = 0

→ Unstable equilibria: X is unstable if each of its neighborhoods contains a state of strictly greater S, at the same E
→ this holds for systems which are characterized by an extremum and whose equilibria fall along a one-parameter

sequence (first applied to NSs by Friedman (86))
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BONUS: NEWMAN-PENROSE FORMALISM

→ Focus on s = −2 spin-weighted spherical harmonic decompositions of the Newman-Penrose scalarΨ4.
→ The coefficients of the spin-weighted decomposition are labeledΨl,m

4

→ ExtractΨl,m
4 from numerical simulations at fixed co-centric spheres increasing radii (typically ranging from

r ∼ 50M to r ∼ 200M.

→ We compute the gravitational wave strain from

Ψ4 = ḧ+ − iḧ×. (14)

35



Introduction Equation of state (EOS) of dense matter Twin stars Stability: the turning point theorem Methods Results: Non-rotating models Results: Rotating models Conclusion

BONUS: EOS PROPERTIES
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→ Both EOSs are modelled by RMF models in the hadronic phase
→ EOS A4: Originally a 4-segment piecewise polytrope above n ∼ n0

→ EOS T9: Quark phase based on constant sound speed (cs = 1) parametrization

P(ϵ) =

{
Ptr ϵT90tr ≤ ϵ ≤ 1.9ϵT90tr ,

Ptr + c2s (ϵ− 1.9ϵT90tr ) ϵ ≥ 1.9ϵT90tr ,
(15)
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