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CHROMODYNAMICS (QCD) PHASE DIAGRAM
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DENSE MATTER EQS

The problem is usually approached by treating the hadronic and quark phases under separate models

AP

ng~4-7n,
interpolated

>
~ My IuB 2

One then interpolates between the two phases and matches the EOSs under some construction

2Baym et al., Rept.Prog.Phys. 81 (2018) 5, 056902
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Many-body approach

- Use understanding of symmetric nuclear/ Write down EFT including relevant d.o.f (nucleons, electrons,
matter at ng muons, ...) interacting via exchange of mesons (scalar,

- Determine nucleon-nucleon potentials from scattering vector, ...)

data associated with symmetric nuclei B N B

— Solve many-body Schrédinger equation in the presence of L = ("0 — mB)p + gooPp — gupy wup + -+ (2)

these potentials

— Expand in terms of proton fraction Next, integrate out mediators. Assuming the mediator fields

can be replaced with their ( values) and
Ep(z,np) =~ E(0,np) —4(1 — z)npSp+---, (1)  extractanEOS
THY — Lav(ba — gL 3)

9(Ouda)
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Bag models:

Relativistic mean-field approach

(Nambu-Jona-Lasinio models)

Takes into accound the bare quark kinetic energy density € Write down EFT including relevant d.o.f (quarks) interacting

Treat entire quark phase as a bag of non-interacting quarks.

(non- interacting Fermi gas) and the bag constant B. via exchange of particles (scalar, vector, ...)
PF (3 = F(le), — 0 (4) (6)
eQ= 2ncnf/ ﬁm (4) L =q("0u —mg+pey )g+ LY + L (6)
0

. : ; Extract EOS in mean-field approach
Bag constant B: difference in energy density between

non-perturbative (QCD ground state) and perturbative
(devoid of all particles and condensates) vacua. Total energy
density is then

e=eg+B 5)
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FROM HADRONS TO QUARKS

P

Maxwell construction:

Impose local charge neutrality within the system. This leads
to strict separation of phases (sharp interface between
quark and hadronic regions). Transition is isobaric and can
happen over a finite range in densities, defined by

PA(uf, p) = PO(u9, ud) (7)

i =3u® (8)

e is discontinuous across interface

Gibbs construction

Impose global charge neutrality over entire system (quarks +
hadrons). Allows for mixed phase regions. all quantities are
continuous accross the transition

PH(pE, wfhy = PO(u@, u@) 9)
pi = 3p (10)
pl =g (12)

Many interpolation techniques, e.g.: high-order polynomial interpolation, spectral expansions, ...
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HYBRID STARS -- THE THIRD FAMILY OF COMPACT STARS

PHYSICAL REVIEW VOLUME 172, NUMBER 5§ 25 AUGUST 1968

Equation of State at Supranuclear Densities and the Existence
of a Third Family of Superdense Stars*}

Urricy H. GerLacu}§
Palmer Physical Laboratory, Princelon University, Princeton, New Jersey
(Received 14 December 1967 ; revised manuscript received 10 May 1968)

This paper presents a method for deducing the equation of state of “cold” matter at supranuclear densities
from astronomical data. In particular, from the masses and the radii of a sequence of superdense stars com-
posed of degenerate matter, one can determine the equation of state. The relationship between the equation
of state and the mass-radius curve is used to construct an equation of state that allows a third family of
superdense stars.
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Twin stars: Hybrid stars with the same masses as neutron stars, but smaller radii
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STABILITY: THE TURNING POINT THEOREM



TURNING POINT THEOREM
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UNSTABLE TWIN STARS
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For a sequence of stars of constant entropy S and angular momentum J, instability to radial perturbations arises when

oM
Oec 5

<0 (12)
o



UNSTABLE TWIN STARS

The fate of twin stars on the unstable branch

Hybrid hadron-quark stars with the same mass as neutron ~ The turning point-theorem indicates that stars which satisfy
stars, but with different radii.
oM

<0
Oec

J,8

)

are susceptible to radial instabilities



QUESTIONS

Some questions we are interested in answering:

e What dynamics can we expect from the evolution of unstable branch hybrid twin stars?

e Does the evolution preferably go toward the hadronic branch? hybrid branch?

e What gravitational wave signals can we expect from the evolution of unstable branch hybrid twin stars?
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METHODS: GENERAL

e \We consider parametrizations of two hybrid hadron-quark descriptions of the dense matter EOS.

- we use a piecewise polytropic fit of the P(p) functional for each of these EOSs, ensuring that stellar properties are

largely unchanged

- Using these finite sound speed versions of the EOS alleviates problems associated with the numerical evolution of

fluid with ¢s = 0
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e We construct stars with different amounts of rotation to cover as much of the solution space as possible.
e We evolve these initial data using 3D general relativistic hydrodynamics while inciting different radial perturbations.
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METHODS: RADIAL PERTURBATIO

e We begin all evolutions in one of three ways:

- Equilibrium evolution: no radial perturbations are explicitly excited at the start of evolution

- Positive pressure perturbation: a radial perturbation is excited by increasing the pressure everywhere in the star by a
small amount.

- Negative pressure perturbation: a radial perturbation is excited by decreasing the pressure everywhere in the star by
some amount. The pressure perturbations take the following form

P(t=0,x) — (1+ &) P(t = 0,x), (13)

where x indicates the spatial coordinates, and £ is a small number that can be either positive or negative in cases
where we add or deplete pressure, respectively.

22



METHODS: INITIAL
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RESULTS: NON-ROTATING MODELS
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e The model initially contracts, leading to a momentary collapse and increasing in size of the quark core.
e As more matter enters the deconfined phase with relatively high pressure, the collapse is halted and the model

reverts into expansion.

e Eventually the model settles close to the the twin star at lower densities.
25



Equilibrium
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TING MODELS: PRESSURE DEPLETION

1015 1015 1015
1.50 10 1.50 10 1.50 10
— st — A
. 1.25 1.25
7
8
50 1.00 1.00
= }
£
0.75 + 0.75 |
TT1 PP
0.50 i T T T 0.50 i T T
0 20 40 60 80 100 0 20 40 60 80
t/Tayn t/Tayn

27



RESULTS: ROTATING MODELS



ROTATING MODELS: PRESSURE DEPLETION
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TING MODELS: GRAVITATIONAL RADIATION
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ROTATING MODELS: DETECTABILITY OF GWS
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e At dsource = 10 kpc, assuming an ideal detector orientation, the gravitational waves associated with the transition
from an unstable hybrid star to a stable hadronic star are detectable.

e Likely progenitors of unstable branch hybrid stars are core-collapse supernovae (CCSN) or white dwarf- neutron star
mergers. Each of these progenitor systems are expected to produce GWs which peak at lower

frequencies:

CSN DNS
COSN ~ 1kHz WONS ~0.01 — 0.1 Hz .



CONCLUSION



MARY

We have explored the stability of hybrid hadron-quark stars on the unstable branch:

N

Unstable branch hybrid twin stars migrate toward the stable neutron star branch:

- we tested stars accross two EOSs, which sample the wide range of viable hybrid hadron quark stars
- we consider several perturbations of different sizes

- In the time they transition to the stable neutron star branch, the stars undergo strong radial oscillations.
- on the unstable branch may produce detectable GW bursts for close-by sources.
- Future work:

- inducing strong radial oscillations in hybrid stars in dynamical capture binaries (e.g. consider eccentric hybrid star mergers)
- exciting strong radial oscillations/phase transitions in WDNS binaries. Considering GW signal at different frequencies.
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TURNING POINT THEOREM

A STABILITY CRITERION FOR MANY-PARAMETER EQUILIBRIUM FAMILIES
RAFAEL D. SORKIN

Institute for Advanced Study, Princeton, NJ
Received 1981 November 6; accepted 1982 January 6

ABSTRACT

‘Theorems are established which let one detect instabilities without recourse to the usual perturba-
tion analysis. The method applics to any system whose stable cquilibria maximize a functional S at
fixed values of one or more parameters E°. It generalizes the “turning point method” by inferring
instability from the behavior in equilibrium of the E* and of their conjugate parameters 9S8 E®. The
“cusp catastrophe” and the black hole equilibrium family illustrate the approach. In connection with
the latter, an Appendix proves that the Gibbs free energy is an analytic function of its natural
arguments, as would be expected if all the equilibria belonged to a single thermodynamic phase.
Subject headings: hydrodynamics — instabilities

- Let M be a manifold of “all possible configurations and states” of a system
- Sand E are C3 functions on M
- Equilibria: X are points in M at which S'is an extremum with respect to infinitesimal variations dX along which

dE =0

- Unstable equilibria: X is unstable if each of its neighborhoods contains a state of strictly greater S, at the same E

- this holds for systems which are characterized by an extremum and whose equilibria fall along a one-parameter

sequence (first applied to NSs by Friedman (86))
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BONUS: NEWMAN-PENROSE FORMALISM

An Approach to Gravitational Radiation
by a Method of Spin Coefficients*
Ezra NEwmay
University of Pittsburgh, Pittsburgh, Pennsylvania
Axp
Roger PENROSET

Syracuse University,t Syracuse, New York
(Received September 29, 1961)

A new approach to general relativity by means of a tetrad or spinor formalism is presented. The
essential feature of this approach is the consistent use of certain complex linear combinations of
Ricei rotation coefficients which give, in effect, the spinor affine connection. It is applied to two
problems in radiation theory; a concise proof of a theorem of Goldberg and Sachs and a deseription
of the asymptotic behavior of the Riemann tensor and metric tensor, for outgoing gravitational
radiation.

- Focus on s = —2 spin-weighted spherical harmonic decompositions of the Newman-Penrose scalar W.
- The coefficients of the spin-weighted decomposition are labeled \I/i"’

- Extract ‘Ilfl’"" from numerical simulations at fixed co-centric spheres increasing radii (typically ranging from
r~ 50Mto r~ 200 M.

- We compute the gravitational wave strain from

4= hy — ihy. (14)
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BONUS: EOS PROPERTIES
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- Both EOSs are modelled by RMF models in the hadronic phase
- EOS A4: Originally a 4-segment piecewise polytrope above n ~ ng
- EOS T9: Quark phase based on constant sound speed (cs = 1) parametrization
Py a0 <e<1.94%
(e) = > T3 T9o (15)
Py +c5(e —1.9¢,°) €>1.9¢,°,
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