Dark lepton superfluid in proto-neutron stars

Sanjay Reddy and DZ, [2107.06279]

Dake Zhou UC Berkeley and Northwestern

Core-collapse supernovae are unique laboratories

Extreme conditions in proto-neutron stars (PNS)

- Baryon number density $n_B \sim n_0 = 0.16 \text{ fm}^{-3}$;
- Temperature $T_{\rm PNS} \sim 20 50$ MeV;
- Neutrinos are trapped for $\tau_{\rm diff} \sim 20$ s;
- Maximum Lepton chemical potential $\mu_L = \mu_{\nu_e} \sim 200$ MeV.

Similar conditions could be encountered in binary NS mergers

Cooling constraints on light DM

 \succ Extra cooling from new light (mass $\leq T_{PNS}$) particles alters ν emissions

DM coupling to SM

Why neutrino portal dark matter?

- ➤Theory: BSM physics expected
 - Neutrino mass model? CP violation? ...

>Phenom: hints from labs and the cosmos

- Short baseline neutrino anomalies (LSND, MiniBooNE), ...
- Strong neutrino self-interactions may solve the Hubble tension (~4σ):

	CMB (Planck 2018)	Local measurements (BAO, Cepheids, Type Ia SNe)
$H_0 (\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1})$	67.9 ±1.3	74.03 ± 1.42

Neutrino self-interaction alleviates the Hubble tension (?)

>The proposal: large late time $\Delta N_{\rm eff} \sim 1$ (requires additional dark sector physics)

>But this damps the amplitude of matter density fluctuations at small scales

Neutrino self-interaction (?) alleviates the Hubble tension (?)

 \succ Neutrino self-interaction suppresses ν free-streaming until T \sim eV;

Also ameliorates the σ_8 tension through degeneracies among params in the CMB fit

Strong interaction strength implies light mediators: $10^6 G_F \sim \frac{\mathcal{O}(1)}{\mathcal{O}(100 \text{ MeV})^2}$

Model: sub-GeV ν -portal scalars

 \succ Gauge neutral scalar ϕ carrying lepton number 2:

$$\mathcal{L}_{\text{eff, int}} \supset -\frac{g_{\alpha\beta}}{2} \nu_{\alpha} \nu_{\beta} \phi^* + \text{h.c.} - m_{\phi}^2 \phi \phi^* - \frac{\lambda}{4} (\phi^* \phi)^2$$

➤Generated from dimension-6 operator after EWSB:

$$\frac{f_{\alpha\beta}}{\Lambda^2} (L_{\alpha} \widetilde{H}) (L_{\beta} \widetilde{H}) \phi^* + \text{h. c.} \qquad L = (\nu_l, l^-)^T$$
[Burgess and Cline, 1994], [Berryman *et al*, 2018], ...

Expect large couplings: $|g| \sim f_{\alpha\beta} \frac{v^2}{\Lambda^2} \sim O(1)$

➤Astro and laboratory constraints:

- $\Delta N_{\rm eff}$ during Big Bang nucleosynthesis: $m_{\phi} \gtrsim 10~{
 m MeV}$ (?);
- Supernovae production: $m_{\phi} \lesssim 300 \text{ MeV}$;
- Focus on $g \equiv g_{ee} \lesssim 10^{-2}$ in this talk; $g \gtrsim 10^{-6}$ satisfies the SN cooling bound.

[Berryman *et al*, 1802.00009] [de Gouvea *et al*, 1910.01132]

Production, Thermalization, and Condensation

 \succ Rapid ϕ production in abundance

$$= \frac{\mathrm{d}n_{\phi}}{\mathrm{d}t} \sim 10^{61} \,\mathrm{s}^{-1} \mathrm{km}^{-3} \times \left(\frac{g}{10^{-3}}\right)^2 \left(\frac{m_{\phi}}{50 \,\mathrm{MeV}}\right)^2 \left(\frac{\mathrm{T}}{30 \,\mathrm{MeV}}\right);$$

 \succ Trapping and thermalization: $\phi \rightarrow \nu \nu$

• Mean free path: $\lambda_{\phi} \sim 10^{-9} \text{ km} \times \left(\frac{10^{-3}}{g}\right)^2 \left(\frac{50 \text{ MeV}}{m_{\phi}}\right)^2 \left(\frac{E_{\phi}}{20 \text{ MeV}}\right);$

 \succ Bosons condense when $\mu_{\phi} \geq m_{\phi}$: spontaneously broken $U(1)_L$

- $V_{\text{eff}}(\phi) = (m_{\phi}^2 \mu_{\phi}^2)\phi^*\phi + \frac{\lambda}{4}(\phi^*\phi)^2$ minimized by a finite vev;
- The ground state is a lepton number superfluid.

Astrophysical Implications

► Instantaneous L transport by the

superfluid

In standard scenarios v diffusion takes ~ 20 s

Joule Heat = I'Rt

Superfluid mandates a constant* μ_L

➤Could lower maximum T attainable

Suppressed Joule heating

Astrophysical Implications

- ➢ Reduce thermal conductivity
 - Neutrinos dominate heat transport;
 - In the standard scenario determined by neutraland charged-current reactions:
 - Scattering: $\nu_X + N \rightarrow \nu_X + N, \ X = e, \mu, \tau$

• Absorptions:
$$u_e + n \rightarrow e^- + p,$$

$$\bar{\nu}_e + p \rightarrow e^+ + n,..$$

- Goldstone mode J enables Cherenkov radiation
 - $v_e \rightarrow v_e J$, shortens v_e mean free path.

Similar reductions could apply to μ and τ .

Astrophysical Implications: neutrino decoupling

The Bulb Model R_{v} μ_{max} r $f(E_{\nu}, r, \mu) = f_{\nu}(E_{\nu})\xi^2 \frac{\Theta(\mu - \sqrt{1 - \xi^2})}{1 - \sqrt{1 - \xi^2}}$ $\xi = \frac{R_{\nu}}{r}, \quad \mu = \left(\frac{\vec{p}}{|\vec{p}|}, \hat{r}\right)$ 12/5/21

Decoupling occurs outside condensed

regions where $\mu_L \approx 0$

- Large flux at the superfluid edge, recedes quickly to smaller radii.
- $ightarrow \phi$'s are still important
 - (stronger-than-)Weak-scale interactions could dominate decoupling: $\nu\nu \rightarrow \phi$ at $\mathcal{O}(g^2)$.
- ≻The neutrino bulb model assumes
 - R_v independent of E_v ;
 - Perfect blackbody spectrum;

11

Astrophysical Implications: neutrino decoupling

> Optical depth determines decoupling radius:

$$\tau(E = 3T_{\nu}) = \int_{R_{\nu}}^{\infty} \frac{\mathrm{d}r}{\lambda(E = 3T_{\nu}, r)} = \frac{2}{3}$$

≻Low T_v (large R_v) might be in tension with SN1987

- fix luminosity around $L_v \approx 3 \times 10^{51}$ ergs/s;
- Bayesian analysis favors $T_{\overline{\nu}_e} \gtrsim 3 \text{ MeV}$ (e.g. [arxiv:0107260])
- \succ Mostly symmetric between v_e and \bar{v}_e :
 - lowers n/p ratio, bad for r-processes
- Self-consistent simulations are required!

12/6/21

Summary and Outlooks

>Interesting phenom for new Weak scale neutrino interactions; Strong neutrino self-interactions highly unlikely (for *e* and μ);

Core-collapse supernovae remains a powerful laboratory; In medium effects could be important for dark matter phenom;

Dark lepton superfluid may drastically change the PNS composition and transport properties;

Self-consistent simulations can identify observable signatures in neutrino signals;

> Extensions: coupling involving μ and τ flavors and flavor non-conservations; Effects on BBN? During core-collapse?