

CONTENT OF THE TALK :

- Background and challenges
- Our Works :

a) Our own Numerical recipeb) Theoretical dvelopment in SN neutrino oscillations :

- Multipole diffusion (Why?)
 Transverse relaxation (When ?)
- 3) Extent of Flavor Depolarization (How much ?)
- c) Extension towards multidimensional systems

Phenomenological Consequences and Conclusion

SN Explosion & Neutrinos :

Manibrata Sen, Northwestern University, Evaston (N3AS Network)

Talk at SNNu ECT*, May 16, 2019

EQUATION OF MOTION :

- Neutrino density matrix : $\hat{\rho}[\vec{r}, E, \vec{p}, t] \equiv \hat{\rho}_{E, \vec{p}}$ $\hat{\rho} = \begin{pmatrix} \langle \nu_e | \nu_e \rangle & \langle \nu_e | \nu_\mu \rangle & \langle \nu_e | \nu_\tau \rangle \\ \langle \nu_\mu | \nu_e \rangle & \langle \nu_\mu | \nu_\mu \rangle & \langle \nu_\mu | \nu_\tau \rangle \\ \langle \nu_\tau | \nu_e \rangle & \langle \nu_\tau | \nu_\mu \rangle & \langle \nu_\tau | \nu_\tau \rangle \end{pmatrix}$
 - $\langle \nu_i | \nu_i \rangle$ Total flavor content

 $\langle \nu_i | \nu_j \rangle$ — Amount of flavor conversion

• Equations governing flavor evolution :

$$\begin{pmatrix} \partial_t + \vec{v}.\vec{\nabla} \end{pmatrix} \hat{\rho}_{E,\vec{p}} = [\hat{H}_{E,\vec{p}}, \, \hat{\rho}_{E,\vec{p}}] \\ \begin{array}{c} \hat{H}_{E,\vec{p}} = H_E^{vac} + H^{mat} + H_{\vec{p}}^{self} \\ \\ H_E^{vac} = \frac{\Delta m^2}{2E} \\ \hline \mathbf{V}_{acuum \ term} \\ \end{array} \underbrace{H_{E,\vec{p}}^{mat} = \sqrt{2}G_F n_e}_{\mathbf{V}_{acuum \ term}} \\ \begin{array}{c} \hat{H}_{e}^{self} = \int d^3\vec{q}/(2\pi)^3 \left(1 - \vec{v}_{\vec{q}} \cdot \vec{v}_{\vec{p}}\right) \left(\hat{\rho}_{E',\vec{q}} - \overline{\hat{\rho}}_{E',\vec{q}}\right) \\ \hline \mathbf{V}_{acuum \ term} \\ \end{array} \underbrace{H_{e}^{mat} = \sqrt{2}G_F n_e}_{\mathbf{V}_{acuum \ term}} \\ \begin{array}{c} H_{e}^{self} = \int d^3\vec{q}/(2\pi)^3 \left(1 - \vec{v}_{\vec{q}} \cdot \vec{v}_{\vec{p}}\right) \left(\hat{\rho}_{E',\vec{q}} - \overline{\hat{\rho}}_{E',\vec{q}}\right) \\ \hline \mathbf{V}_{acuum \ term} \\ \end{array} \underbrace{H_{e}^{mat} = \sqrt{2}G_F n_e}_{\mathbf{V}_{acuum \ term}} \\ \begin{array}{c} H_{e}^{self} = \int d^3\vec{q}/(2\pi)^3 \left(1 - \vec{v}_{\vec{q}} \cdot \vec{v}_{\vec{p}}\right) \left(\hat{\rho}_{E',\vec{q}} - \overline{\hat{\rho}}_{E',\vec{q}}\right) \\ \hline \mathbf{V}_{acuum \ term} \\ \end{array} \underbrace{H_{e}^{mat} = \sqrt{2}G_F n_e}_{\mathbf{V}_{acuum \ term}} \\ \begin{array}{c} H_{e}^{self} = \int d^3\vec{q}/(2\pi)^3 \left(1 - \vec{v}_{\vec{q}} \cdot \vec{v}_{\vec{p}}\right) \left(\hat{\rho}_{E',\vec{q}} - \overline{\hat{\rho}}_{E',\vec{q}}\right) \\ \hline \mathbf{V}_{acuum \ term} \\ \end{array} \underbrace{H_{e}^{self} = \int d^3\vec{q}/(2\pi)^3 \left(1 - \vec{v}_{\vec{q}} \cdot \vec{v}_{\vec{p}}\right) \left(\hat{\rho}_{E',\vec{q}} - \overline{\hat{\rho}}_{E',\vec{q}}\right) \\ \hline \mathbf{V}_{acuum \ term} \\ \end{array} \underbrace{H_{e}^{self} = \int d^3\vec{q}/(2\pi)^3 \left(1 - \vec{v}_{\vec{q}} \cdot \vec{v}_{\vec{p}}\right) \left(\hat{\rho}_{E',\vec{q}} - \overline{\hat{\rho}}_{E',\vec{q}}\right) \\ \hline \mathbf{V}_{e}^{self} \\ \hline \mathbf{V}_{acuum \ term} \\ \end{array} \underbrace{H_{e}^{self} = \int d^3\vec{q}/(2\pi)^3 \left(1 - \vec{v}_{\vec{q}} \cdot \vec{v}_{\vec{p}}\right) \left(\hat{\rho}_{E',\vec{q}} - \overline{\hat{\rho}}_{E',\vec{q}}\right) \\ \hline \mathbf{V}_{e}^{self} \\ \hline \mathbf{V}_{acuum \ term} \\ \hline \mathbf{V}_{e}^{self} \\ \hline$$

Neutrino Oscillations

R < 10 km Trapping No Oscillation (?)

 $H^{self} \gg H^{vac}, H^{mat}$

R ~ 10 km Decoupling Fast Collective conversion 1/t ~ μ

> R ~ 100 km Free-streaming Slow Collective conversion 1/t ~ (ωμ)^{1/2} Swaps at μ ~ ω

> > $H^{self} \ll H^{vac}, H^{mat}$

 $H^{self} \sim H^{vac}, H^{mat}$

Electron antineutrinos / neutrinos decouple earlier / later

> forward scatter with each other and undergo collective oscillations

> > forward scatter off electrons and undergo MSW conversions

R ~ 1000 km Free-streaming MSW conversion Resonance at λ ~ ω

Interstellar space Free-streaming Kinematic decoherence

Inside Earth Free-streaming Regeneration

Basudeb Dasgupta (TIFR Mumbai)

Talk at Neutrino 2018, Heidelberg, June 9, 2018

Fast Flavor Conversions : A review

Chakraborty, Hansen, Izaguirre, Raffelt (2016) Rav Sawyer (2005, 2015)

- <u>Very close</u> to the SN core (few km's) Rate \propto Neutrino number density
- Rapid/faster compared to neutrino oscillation in vacuum/ordinary matter
- Requires a <u>"zero" crossing</u> in neutrino angular distribution and <u>independent of energy</u> (and mass hierarchy)

EQUATION OF MOTION (FFC) :

We stick to two-flavor framework :

$$\hat{\rho}_{E,\vec{v}} = \begin{pmatrix} \langle \boldsymbol{\nu}_{e} | \boldsymbol{\nu}_{e} \rangle_{E,\vec{v}} & \langle \boldsymbol{\nu}_{e} | \boldsymbol{\nu}_{x} \rangle_{E,\vec{v}} \\ \langle \boldsymbol{\nu}_{x} | \boldsymbol{\nu}_{e} \rangle_{E,\vec{v}} & \langle \boldsymbol{\nu}_{x} | \boldsymbol{\nu}_{x} \rangle_{E,\vec{v}} \end{pmatrix} = \frac{Tr\left(\hat{\rho}_{E,\vec{v}}\right)}{2} \mathbb{I}_{2\times 2} + \frac{g_{E,\vec{v}}}{2} \vec{S}_{E,\vec{v}} \cdot \sigma$$

$$Tr\left(\hat{H}_{E,\vec{v}}\right) = 1$$

$$\hat{H}_{E,\vec{v}} = \frac{Ir\left(H_{E,\vec{v}}\right)}{2}\mathbb{I}_{2\times 2} + \frac{1}{2}\vec{H}_{E,\vec{v}}\cdot\sigma$$

Chakraborty, Hansen, Izaguirre, Raffelt (2016) Dasgupta, Mirizzi, Sen (2017) Bhattacharyya, Dasgupta (2020)

$$\begin{pmatrix} \partial_t + \vec{v}.\vec{\nabla} \end{pmatrix} \hat{\rho}_{E,\vec{v}} = \hat{H}_{E,\vec{v}} \hat{\rho}_{E,\vec{v}} - \hat{\rho}_{E,\vec{v}} \hat{H}_{E,\vec{v}} \longrightarrow \left(\partial_t + \vec{v}.\vec{\nabla} \right) \mathsf{S}_{\omega,\vec{v}} = \left(\mathsf{H}^{\mathrm{vac}}_{\omega} + \mathsf{H}^{\mathrm{mat}} + \mathsf{H}^{\mathrm{self}}_{\vec{v}} \right) \times \mathsf{S}_{\omega,\vec{v}}$$

$$\mathsf{H}^{\mathrm{mat}} = \sqrt{2} G_F (n_{e^-} - n_{e^+}) (0, 0, 1) \qquad \mathsf{H}^{\mathrm{vac}}_{\omega} = \omega \left(\sin 2\vartheta, 0, \cos 2\vartheta \right)$$

$$\mathsf{H}^{\mathrm{self}}_{\vec{v}} = \int d^3 \vec{p}'_{\omega',\vec{v}'} / (2\pi)^3 g_{\omega',\vec{v}'} \left(1 - \vec{v} \cdot \vec{v}' \right) \mathsf{S}_{\omega',\vec{v}'}$$

EQUATION OF MOTION (FFC) :

We stick to two-flavor framework :

$$\begin{split} \hat{\rho}_{E,\vec{v}} &= \begin{pmatrix} \langle \boldsymbol{\nu}_{e} | \boldsymbol{\nu}_{e} \rangle_{E,\vec{v}} & \langle \boldsymbol{\nu}_{e} | \boldsymbol{\nu}_{x} \rangle_{E,\vec{v}} \\ \langle \boldsymbol{\nu}_{x} | \boldsymbol{\nu}_{e} \rangle_{E,\vec{v}} & \langle \boldsymbol{\nu}_{x} | \boldsymbol{\nu}_{x} \rangle_{E,\vec{v}} \end{pmatrix} = \frac{Tr\left(\hat{\rho}_{E,\vec{v}}\right)}{2} \mathbb{I}_{2\times 2} + \frac{g_{E,\vec{v}}}{2} \vec{S}_{E,\vec{v}} \cdot \sigma \\ \hat{H}_{E,\vec{v}} &= \frac{Tr\left(\hat{H}_{E,\vec{v}}\right)}{2} \mathbb{I}_{2\times 2} + \frac{1}{2} \vec{H}_{E,\vec{v}} \cdot \sigma \\ \begin{pmatrix} (\partial_{t} + \vec{v}.\vec{\nabla}) S_{\vec{v}} = \mu_{0} \int d^{3}v' G_{\vec{v}'}\left(1 - \vec{v} \cdot \vec{v}\right) S_{\vec{v}'} \times S_{\vec{v}} \\ (\partial_{t} + \vec{v}.\vec{\nabla}) S_{\vec{v}} = \mu_{0} \int d^{3}v' G_{\vec{v}'}\left(1 - \vec{v} \cdot \vec{v}\right) S_{\vec{v}'} \times S_{\vec{v}} \\ \end{pmatrix} \\ H^{\text{mat}} &= \sqrt{2} G_{E,\vec{v}} = \hat{H}_{E,\vec{v}} \hat{\rho}_{E,\vec{v}} - \hat{\rho}_{E,\vec{v}} \hat{H}_{E,\vec{v}} & (\partial_{t} + \vec{v}.\vec{\nabla}) S_{\omega,\vec{v}} = \left(H^{\text{vac}}_{\omega} + H^{\text{mat}} + H^{\text{self}}_{\vec{v}} \right) \times S_{\omega,\vec{v}} \\ H^{\text{mat}} &= \sqrt{2} G_{E}\left(n_{e^{-}} - n_{e^{+}}\right) (0,0,1) & H^{\text{vac}}_{\omega} = \mathcal{A}\left(\sin 2\vartheta, 0, \cos 2\vartheta\right) \\ H^{\text{self}}_{\vec{v}} &= \int d^{3}\vec{p}'_{\omega',\vec{v}'}/(2\pi)^{3} g_{\omega',\vec{v}'}\left(1 - \vec{v} \cdot \vec{v}'\right) S_{\omega',\vec{v}'} & S_{\vec{v}'} \equiv S_{\vec{v}'} \\ & \left| S^{\perp}_{v} \right| : \text{Flavor conversion} & S^{\parallel}_{v} : \text{Total Flavor content} \end{aligned}$$

Difficulties and Challenges :

What are the challenges ?	What did we do ?
Huge Phase space dimensionality 3 sp. + 3 mom. + 1 time = 7 dim	Partially resolved 2 sp. + 2 mom. + 1 time = 5 dim.
Large set of coupled nonlinear P.D.E's	Developed : a) Analytical techniques b) Numerical code
Lack of numerical techniques to give accurate and precise result in the nonlinear regime	Developed our own code that gives accurate and precise answer even in the nonlinear regime
Lack of analytical development / theory beyond the linear regime (Linear stability) which can predict the final outcome	Developed our own theory that can predict how, when and to what extent fast conversion can happen.

OUR NUMERICAL RECIPE :

RESULTS : Irreversibility

Model :

Initial Cond :

1Time + 1 Sp. + 1 Mom.

$$\begin{aligned} \mathsf{S}_{v}^{\parallel}|^{\mathrm{ini}} &= +1 \\ \mathsf{S}_{v}^{\perp}\Big|^{\mathrm{ini}} &= 10^{-6}\delta\left(z\right) \end{aligned}$$

Irreversible and steady state behaviour in time
length shrinks

Bhattacharyya, Dasgupta (2020) arXiv : 2005.00459

 $G_v = 1, v > 0; A - 1, v < 0$

RESULTS : Multipole Diffusion

• In terms of multipole moments, $M_n = \int_{-1}^{+1} dv G_v L_n S_v$ and considering n as continuum we get :

 $\partial_t \mathsf{M}_n - \mathsf{M}_0 \times \mathsf{M}_n = \partial_z \left(\mathsf{M}_n + \partial_n \mathsf{M}_n / (2n+1) + \partial_n^2 \mathsf{M}_n / 2 \right) - \mathsf{M}_1 \times \left(\mathsf{M}_n + \partial_n \mathsf{M}_n / (2n+1) + \partial_n^2 \mathsf{M}_n / 2 \right)$

- Further coarse graining over z , and using $2n+1 \approx 2n$

 $\partial_t \langle M_n
angle = rac{\langle M_1
angle}{2} \left(\partial_n^2 \langle M_n
angle + rac{1}{n} \partial_n \langle M_n
angle
ight)$

Diffusion in multipole space

• The above equation remains same under $n \to an$, $t \to a^2 t \longrightarrow \langle M_n(t) \rangle = f\left(\frac{n^2}{t}\right) = f(\xi)$

$$2\frac{d^2}{d\xi^2}f(\xi) + \left(1/\langle M_1 \rangle + 2/\xi\right)\frac{d}{d\xi}f(\xi) = 0$$

$$\langle M_n(t)
angle = c_1 \operatorname{Ei} \left[- n^2 / \left(2 \langle M_1
angle t
ight)
ight] + c_2$$

Georg G. Raffelt and Günter Sigl Phys. Rev. D 75, 083002 Bhattacharyya, Dasgupta (2020)

Phys.Rev.Lett. 126 (2021) 6, 061302

RESULTS : Multipole Diffusion

Power flow in multipole space from low to high n values and coarse-graining causes irreversibility in time and also shrinking in the length for high n multipole moments

RESULTS : Transverse Relaxation

- Modes for which $|H_v^{\perp}| \approx |H_v^{\parallel}|$, S_v crosses the transverse plane and gets depolarized
- Amount depends on lepton asymmetry and choice of v

15

15

RESULTS : Flavor Depolarization

Depolarization factor :

$$f_v^{\mathrm{D}} = rac{1}{2} ig(1 - \langle \mathsf{S}_v
angle^{\mathrm{fin}} / \langle \mathsf{S}_v
angle^{\mathrm{ini}} ig)$$

 $f_v^{\rm D} = 0.5$ — Complete depolarization $f_v^{\rm D} = 0$ — No depolarization

Multipole expansion upto linear order :

$$G_v \mathsf{S}_v^{\parallel}|_{fin} = \frac{\mathsf{M}_0^{fin}}{2} + \frac{3v\mathsf{M}_1^{fin}}{2} + O(v^2)$$

Lepton number conservation :

$$\left\langle \mathsf{M}_{0}^{ini}\right\rangle = \left\langle \mathsf{M}_{0}^{fin}\right\rangle = A \quad \left\langle \mathsf{M}_{1}^{fin}\right\rangle = \frac{A}{2}$$

$$f_{v}^{\mathbf{D}} \approx 0.5, \text{if } v < 0$$

$$f_{v}^{\mathbf{D}} \approx \frac{1}{2} - \frac{A}{4} - \frac{3A}{8}v, \text{if } v > 0$$

v

Soumya Bhattacharyya (TIFR Mumbai)

N3AS Zoominar, Spring 2021

Mar 30, 2021

CONCLUSION

- We have presented an *analytical theory* of fast neutrino flavor conversions in the *nonlinear regime*.
- We showed fast conversions can bring different neutrino flavors *close to each other* (Flavor Depolarization) and *irreversibility* in the system.
- **T2 relaxation** and **multipole diffusion** governs such behaviour.
- We gave a strategy and a formula for computing the extent of flavor depolarization

Phenomenological Consequences :

- Flavor depolarization can cause significant increse in *neutrino heating rate* and *change the explosion scenario*.
- Including MSW conversions, propagation and eartheffects our formula will allow one to determine the *final neutrino signal from a SN explosion*

$$F^{\mathrm{fin}}_{\stackrel{\scriptstyle (
ightarrow)}{m{
u}_{\,e}},\,\stackrel{\scriptstyle (
ightarrow)}{m{
u}_{\,\mu}}}[ec{p}\,] = (1-f^{\mathrm{D}}_{ec{p}})F^{\mathrm{ini}}_{\stackrel{\scriptstyle (
ightarrow)}{m{
u}_{\,e}},\,\stackrel{\scriptstyle (
ightarrow)}{m{
u}_{\,\mu}}}[ec{p}\,] + f^{\mathrm{D}}_{ec{p}}F^{\mathrm{ini}}_{\stackrel{\scriptstyle (
ightarrow)}{m{
u}_{\,\mu}},\,\stackrel{\scriptstyle (
ightarrow)}{m{
u}_{\,e}}}[ec{p}\,]$$

- This signal can be the first ever direct probe of testing the *neutrino-neutrino self-interaction*.
- The final output of fast conversions can have implications even in the *nucleosynthesis of elements*, astrophysics of *binary neutron star mergers*, *diffuse SN background* and can be detected in future experiments.

Extension towards multidimensional framework 2 (sp.) +2 (mom.)+1 (time) dim.

No Growth !!

Forward and Backward excess

Only Forward excess

Turbulent density profile

Numerical recipe : General Dispersion relation solver

Results : Only forward excess / Single crossing

A = 0

- 1) Linear growth rate has the same symmetry as ELN 2) k = 0 mode is unstable
- 3) Growth rate decreses as k increase.
- 4) Decrease is much slower along symmetry axis
- 5) Fourier mode with maximum growth rate located along non-symmetric axis.

 $A \neq 0$

1) Above (1)-(5) points remain unchanged 2) Decrease as a function of k is much faster

3) Overall growth rate is suppressed.

Results : Both forward and backward excess / Double crossing

A = 0

- 1) Linear growth rate has the same symmetry as ELN
- 2) k = 0 mode is stable
- 3) Growth rate shows a lorentzian nature w.r.t k
- 4) Wider along $\beta = 90^{\circ}$ than $\beta = 0^{\circ}$
- 5) More growth along $\beta = 90^{\circ}$ than $\beta = 0^{\circ}$
- 5) Fourier mode with maximum growth rate located along symmetric axis.

 $A \neq 0$

1) Lepton asymmetry breaks symmetry between $\beta = 90^{\circ}$ than $\beta = 0^{\circ}$

- 2) Shifts the symmetry towards diagonal
- 2) Previous (2), (3), (4) and (5) remains same.
- 3) Wideness is lesser compared to A = 0
- 4) Shifted more towards k = 0
- 5) Overall growth rate suppressed.
- 6) Fourier mode with maximum growth rate shifted along diagonals

7) All effects from (1)-(6) gets more pronounced with increse of A

Results : Turbulent profile / Multiple crossings

Soumya Bhattacharyya (TIFR Mumbai)

N3AS Zoominar, Spring 2021

Numerical

Take away message :

1) The symmetries of $Im \omega$ in the k- β plane, its *radial* (i.e., vs. k) and *angular* (i.e., vs β) variation, the *stability of the k=0 mode*, *overall linear growth* and *the position of the Fourier mode with the highest growth rate*, etc., all have an *intimate connection with the various symmetries* of the neutrino angular distributions and one can analytically understand them in great detail

2) ELNs with *large number of zero crossings* lead to a relatively *smaller growth rate*, essentially decreasing as 1/m where m is the number of crossings. We speculate that this may be important for many realistic environments where electron-neutrino and anti electron neutrino distributions are close to each other and crossings occur in the ELNs due to noise or fluctuations