The effect of fast neutrino flavor conversions on Neutrino-driven wind and Supernova nucleosynthesis

A. Sieverding^{2,1}, Z. Xiong¹, M. Sen^{3,4}, Y.-Z. Qian¹ ¹ University of Minnesota, Minneapolis ²Oak Ridge National Laboratory ³ Northwestern University, Evanston ⁴ UC Berkeley

> N3AS Online Seminar Dec. 8th 2020

2020

Neutrino flavor transformations

- Neutrino mass and weak interaction eigenstates are not the same
- Rich physics of neutrino flavor transformations $(\nu_e \leftrightarrow \nu_{\mu,\tau}, \bar{\nu}_e \leftrightarrow \bar{\nu}_{\mu,\tau})$
- ν -matter and $\nu \nu$ interactions can induce flavor instabilities

Image credit: KM3NeT collaboration

A. Sieverding

Neutrino flavor transformations

- Neutrino mass and weak interaction eigenstates are not the same
- Rich physics of neutrino flavor transformations $(\nu_e \leftrightarrow \nu_{\mu,\tau}, \ \bar{\nu}_e \leftrightarrow \bar{\nu}_{\mu,\tau})$
- ν-matter and ν ν interactions can induce flavor instabilities
- "Fast" neutrino flavor transformations may occur on very short scales and at high matter densities

- Image credit: KM3NeT collaboration
- Potential effect on the production of the elements in Supernovae

Neutrinos and supernovae

- Fe core of a massive star $(\geq 8 10 M_{\odot})$ collapses until nuclear densities are reached
- Strong neutrino emission from electron captures and cooling ($\sim 10^{56}/{\rm s})$
- Bounce shock stalls (ν losses, nuclear dissociation)
- Neutrino heating induces turbulence and revives the explosion

Inset from Pan et al. (2016)

Neutrinos and supernovae

- Three sites of nucleosynthesis
 - Inner, neutrino heated, shock-driven ejecta
 - Outer shock-driven ejecta
 - Neutrino driven wind (NDW)

Inset from Pan et al. (2016)

A. Sieverding

Neutrinos and supernovae

- Three sites of nucleosynthesis
 - Inner, neutrino heated, shock-driven ejecta
 - Outer shock-driven ejecta
 - Neutrino driven wind (NDW)
- NDW: Fast, hot matter outflow from the PNS surface: few $10^{-3}M_{\odot}$
- NDW is determined by long-term neutrino cooling of the PNS, decoupled from the explosion mechanism
- Neutrinos determine Y_e of the ejecta

• Wind slows down as it catches up with the shocked ejecta

Impact of fast neutrino flavor transformations on NDW and SN nucleosynthesis

Nucleosynthesis conditions: νp process

- NDW is expected to be proton-rich (Y_e > 0.5)
- Proton capture nucleosynthesis inhibited by long β^+ decay lifetimes
- If neutrons are present:
 (n, p) instead of β⁺ decay
- $\bar{\nu}_e + p \rightleftharpoons n + e^+$ as neutron source

- Important quantities:
 - Initial proton-richness (Y_e)
 - p-to-seed ratio (depends on expansion timescale, entropy)
 - $\bar{\nu}_{e}$ exposure while the temperature is right (3 1 GK)

Steady state model for NDW

• Time-independent eigenvalue problem for mass loss rate \dot{M}

$$\dot{M} = 4\pi r^2 \rho v, \tag{1a}$$

$$v\frac{dv}{dr} = -\frac{1}{\rho}\frac{dP}{dr} - \frac{GM_{\text{PNS}}}{r^2},$$
(1b)

$$\frac{d\epsilon}{dr} = \frac{P}{\rho^2} \frac{d\rho}{dr} + \frac{\dot{q}}{v},$$
 (1c)

$$\frac{dY_e}{dr} = \frac{1}{v} [(\lambda_{\nu_e n} + \lambda_{e^+ n}) Y_n - (\lambda_{\bar{\nu}_e p} + \lambda_{e^- p}) Y_p], \quad (1d)$$

- Inner boundary at $R_{
 u}(t)$: $\dot{q}=$ 0, $dY_e/dr=$ 0, and $T=T_{
 u_e}$
- Outer boundary : Transonic solution, i.e., $\frac{dv}{dr} \rightarrow 0$
- Interaction and heating based on neutrino fluxes and spectra from simulations
- Details in Xiong et al. (2019) ApJ 880, 81

Time-dependent model

- Time-dependent neutrino luminosity and spectra from simulations
- Sequence of steady state snapshots covering up to 1000 km
- Tracking "tracers" across snapshots gives time-dependent thermodynamic trajectories
- Allows to calculate total wind mass and integrated yields
- Two models: e8.8 and s27

Neutrino flavor transformations

• In a supernova,
$$\langle E_{
u_{\mu,\tau}}
angle > \langle E_{
u_e}
angle$$

- Flavor conversion can turn high energy $u_{\mu,\tau}$ into u_e
- Two cases:

Flavor equilibrium

•
$$F_{\nu_e}^{\text{osci}} = 1/3 \sum_{i=e,\mu,\tau} F_{\nu_i}^0$$

Intermediate mixing

•
$$F_{\nu_e}^{\text{osci}} = P_{ee}F_{\nu_e}^0 + (1 - P_{ee})F_{\nu_a}^0$$

•
$$F_{\bar{\nu}_e}^{\mathrm{osci}} = P_{\bar{e}\bar{e}}F_{\bar{\nu}_e}^0 + (1 - P_{\bar{e}\bar{e}})F_{\bar{\nu}_x}^0$$

•
$$P_{ee} = 0.68, \ P_{\bar{e}\bar{e}} = 0.55$$

Effects on dynamics

- Flavor oscillations effectively make ν_e and $\bar{\nu}_e$ more energetic
- Charged current reacions are the main heating mechanism
- Increased wind outflow rate *M*, increased total wind mass by up to 40%
- Otherwise, only minor changes of the dynamics
- More energetic v_e lead to an increase of Y_e

Wind termination radius

- Wind slows down when it catches up with the SN ejecta at r_{wt}
- Material spends more time in the relevant temperature range
 (*Wanajo et al. 2011*)

 Consistent model requires full simulation

- Simple model: switch to parametric expansion at smaller *r_{wt}*
- additional model: s27 with $r_{\rm wt} = 500$ km

In total: 3 models x 3 oscillation cases

Effects on nucleosynthesis

- Standard e8.8 and s27 models ($r_{wt} = 1000$ km) show little effect of the νp process
- With r_{wt} = 500 km, the production of heavier nuclei is enhanced
- More energetic ν
 _e favor νp process by providing more neutrons
- More energetic v_e favor lead to higher Y_e at freeze-out
 - higher Y_e at freeze-out
 - more neutrons

Effects on nucleosynthesis

- \bullet Significantly increased production of $^{64}Zn,\,^{78}Kr,\,^{84}Sr$
- At most 3% of SN should produce conditions as in model s27, $r_{\rm wt} = 500$ km and flavor equilibrium to avoid overproduction of ⁸⁴Sr

Implications

Model s27 with $r_{wt} = 500$ km, combined with SN yields from Heger et al. (2010)

Kobayashi et al. (2020)

- High Zn abundances in metal poor stars are challenging for most supernova models
- Promising for Zn and Sr abundances in HE1327-2326

2 Effects on the Neutrino Driven Wind

Impact on the innermost supernova ejecta

Supernova simulation

- Composition of the inner, neutrino heated supernova ejecta are also strongly affected by neutrino irradiation
- 3D Simulation for a 11.8 M_☉ star (Müller+ 2019, Janka+ 2015)
- Nucleosynthesis of the innermost 0.1 M_{\odot}
- $\Delta \varepsilon = \langle \varepsilon_{\bar{\nu}_e} \rangle \langle \varepsilon_{\nu_e} \rangle$
- Original: $\Delta \varepsilon \approx 4 \text{ MeV}$
- Corrected: $\Delta \varepsilon \approx 2 \text{ MeV}$ (artificially increased $\langle \varepsilon_{\nu_e} \rangle$)
- Flavor conversions would have similar effects on the spectra

Nucleosynthesis results

- Flavor equilibrium would suppress production of p isotopes
- Enhanced yields of Sc
- Change pattern of Ti,Fe,Ni chains

2020

Impact of fast neutrino flavor transformations on NDW and SN nucleosynthesis

- Fast flavor transformation favor the νp process in neutrino driven winds
- Make NDWs more likely to be a major source of *p*-isotopes
- Overproduction is only problematic if the most favorable conditions are assumed
- Major effects also on the inner supernova ejecta, may suppress heavy element production
- (not in this talk) Affects the production of isotopes due to the ν -process (²⁶Al, ³⁶Cl, ¹³⁸La, ¹⁸⁰Ta)