Díffuse SN neutrino background: ubiquitous and driving fundamental physics

Manibrata Sen UC Berkeley & Northwestern University

Network for Neutrinos, Nuclear Astrophysics and Symmetries (N3AS) seminar, 09/01/2020

Neutrino flux from a typical SN

 Core-collapse SNe, collapse of iron core in a massive star, leading to MeV neutrino emission.

Dominated by cooling phase neutrinos. Almost thermal spectra for different flavors.

Figure from Roberts and Reddy, Handbook of Supernovae, Springer Intl., 2017

- O(30) events in total.
- One of the first examples of multi-messenger astronomy.
- Not enough statistics, still some of the strongest bounds on neutrino properties!
- A future galactic SN will have O(10k) events in detectors! Surely, we can capitalize on that!
- Extremely rare to have one. So do we wait a lifetime?

SN 1987A: "Many" neutrinos were observed

The Díffuse Supernova Neutríno Background

- We can be more inclusive, and look to the distant Universe for more SNe.
- Not that rare. On an average, there is 1 SN going off per second. The neutrino emission produces the DSNB.
- Detectable neutrino flux, mostly from stars upto redshift z~1, but extends upto z~6.
- Opens up a new frontier in neutrino astronomy.

Beacom, Ann.Rev.Nuc.Phys.Sc.2010 Lunardini, Astropart. Phys2016

John Beacom, TAUP2011

How to estimate the DSNB?

N3AS seminar, Sep 1, 2020

J rate
$$R_{\text{CCSN}}(z) = \dot{\rho}_*(z) \frac{\int_8^{50} \psi(M) \, dM}{\int_{0.1}^{100} M\psi(M) \, dM}$$
.

$$-\Omega_{\Lambda}(1+z)^2$$

Ingredient 1: Cosmology

Parameter	TT+lowE 68% limits	TE+lowE 68% limits	EE+lowE 68% limits	TT,TE,EE+lowE 68% limits	TT,TE,EE+lowE+lensing 68% limits	TT,TE,EE+lowE+lensing+BAO 68% limits
$H_0 [{ m kms^{-1}Mpc^{-1}}]$	66.88 ± 0.92	68.44 ± 0.91	69.9 ± 2.7	67.27 ± 0.60	67.36 ± 0.54	67.66 ± 0.42
$\Omega_{\Lambda}.........$	0.679 ± 0.013	0.699 ± 0.012	$0.711\substack{+0.033\\-0.026}$	0.6834 ± 0.0084	0.6847 ± 0.0073	0.6889 ± 0.0056
$\Omega_m \mathrel{.} \mathrel{.} \mathrel{.} \mathrel{.} \mathrel{.} \mathrel{.} \mathrel{.} \mathrel{.}$	0.321 ± 0.013	0.301 ± 0.012	$0.289^{+0.026}_{-0.033}$	0.3166 ± 0.0084	0.3153 ± 0.0073	0.3111 ± 0.0056
$\Omega_{\rm m} h^2$	0.1434 ± 0.0020	0.1408 ± 0.0019	$0.1404^{+0.0034}_{-0.0039}$	0.1432 ± 0.0013	0.1430 ± 0.0011	0.14240 ± 0.00087
$\Omega_{\rm m}h^3$	0.09589 ± 0.00046	0.09635 ± 0.00051	$0.0981\substack{+0.0016\\-0.0018}$	0.09633 ± 0.00029	0.09633 ± 0.00030	0.09635 ± 0.00030
σ_8	0.8118 ± 0.0089	0.793 ± 0.011	0.796 ± 0.018	0.8120 ± 0.0073	0.8111 ± 0.0060	0.8102 ± 0.0060

$$H(z) = H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda (1+z)^{3(1+w)} + (1-\Omega_m - \Omega_\Lambda)(1+z)^2}$$

• Underlying cosmology is well constrained from Planck 2018 data. • Parameters provide a normalisation to the spectra

PLANCK 2018

Ingredient 2: Star formation Rate

$$\dot{\rho}_*(z) = \dot{\rho}_0 \left[(1+z)^{-10\alpha} + \left(\frac{1+z}{B}\right)^{-10\beta} + \left(\frac{1+$$

$$B = (1 + z_1)^{1 - \alpha/\beta}$$

$$C = (1 + z_1)^{(\beta - \alpha)/\gamma} (1 + z_2)^{1 - \beta/\gamma}$$

$$R_{\rm CCSN}(z) = \dot{\rho}_*(z) \frac{\int_8^{50} \psi(M) \, dM}{\int_{0.1}^{100} M\psi(M) \, dM}$$

Here $\psi(M) \sim M^{-2.35}$ is the initial mass distribution function

N3AS seminar, Sep 1, 2020

Cosmic SFR pretty well known from data in the UV and the far-infrared

Hopkins, Beacom, ApJ2006 Yuksel, Kistler, Beacom, Hopkins, ApJ2008 Horiuchi, Beacom, Dwek, PRD2009

Ingredient 3: Neutrino spectra

• Assume an approximately thermal spectra, characteristic of late-time phase.

$$F_{\nu}(E) = \frac{E_{\nu}^{\text{tot}}}{6} \frac{120}{7\pi^4} \frac{E_{\nu}^2}{T_{\nu}^4} \frac{120}{e^{E_{\nu}/2}}$$

- Could be processed by collective neutrino oscillations, however effect is not very large. Hence ignore.
- Only assume adiabatic MSW transition, so heaviest neutrino $\leftrightarrow \nu_e$ lightest neutrinos $\leftrightarrow \nu_x$
- Temperature hierarchy $T_{\nu_e} < T_{\bar{\nu}_e} < T_{\nu_x}$

Putting all ingredients together

- The DSNB window ~10-26 MeV.
- Uncertainty due to SFR.
- Main backgrounds to keep in mind:

Solar ν_e : extends upto ~20 MeV (can be reduced by directional information). Geo $\bar{\nu}_e$: Mostly dominates low energy ~ 4 MeV background. Reactor $\bar{\nu}_e$: extends upto ~10 MeV. Ineliminable. Atmospheric ν : Low energy tails of ν_e and $\bar{\nu}_e$. Exceeds the DSNB at E~30 MeV.

Ineliminable.

• Event rate
$$N_i = N_{\text{tar}}(\Delta t) \int_{\text{bin i}} dE^{\text{rec}} \int_{\text{all}} dE^{\text{true}}$$

• Main channel is IBD: $\bar{\nu}_{\rho} + p \rightarrow e^+ + n$

- Spallation backgrounds: radioactivity induced by cosmic muon spallation in water: $\mu + O \rightarrow \mu + X$. Substantial background ~ 20 MeV.
- Invisible muons: $\nu_{\mu} + N \rightarrow \mu + N'$. If muon energy is below Cherenkov threshold, it can only be detected through decay.
- Low energy atmospheric neutrinos. Isotropic background.

Detecting the DSNB + backgrounds: Super-K

 $\sigma_{\nu} \sigma_{\nu} \epsilon(E^{\text{true}}, E^{\text{rec}})$

• Solution: Gd doping.

- Reduces energy threshold.
- Background due to spallation will be subtracted almost completely and the one due to invisible muons will be reduced by a factor of 5.

Gddoping: GADZOOKS! Beacom, Vagins, PRL2004

Future Detection: Hyper-Kamiokande + Gd

- HK enriched with Gd provides excellent detection prospects.
- Results with 1 tank with 10 years of data taking.
- Backgrounds same as SK.

de Gouvea, Martinez-Soler, Perez-Gonzalez, MS, 2007.13748

Future Detection: Theia

- 100 kT detector, with 10 years of data-taking
- Low energy resolution of scintillator, and high-energy Cherenkov detector.
- Major background: NC interactions of ν on C nuclei. Prompt signal in recoil + delayed signal due to absorption of emitted neutron. Can be reduced using Cherenkov/Scintillation ratio.

Fundamental Physics Probes

Multidisciplinary aspects of understanding the supernova neutrinos:

- Particle physics aspects: Neutrino physics in dense media, neutrino properties, anomalous cooling mechanism due to new physics,...
- sources, neutron star equation of state, nucleosynthesis,...
- physics,...
- Multi-messenger aspect: adds to information from photons and gravity waves.
 - All these channels can open up with a future detection of the DSNB.

• Astrophysics: Star formation rates, including life and birth cycles, constraints on new

• Cosmology: SN distance indicators, fundamental cosmology parameters, dark matter

Neutrino Decay

Neutríno Propertíes: Decay

- Massive neutrinos can decay to lighter ones even within the SM. Age longer than universe.
- New physics can mediate faster decay.

 $\mathscr{L} \supset \nu_{l} \mathbf{P}_{\mathbf{I}} \nu_{h} \varphi + \mathrm{H.c.}$

 $\nu_{hL} \rightarrow \nu_{lL} + \varphi$ Helicity cons. (h.c.) $\nu_{hL} \rightarrow \nu_{lR} + \varphi$ Helicity flip. (h.f.)

• In ν_h rest frame, the daughter that shares the same helicity as the parent is emitted preferrentially along the parent helicity direction.

de Gouvea, Martinez-Soler, MS, PRD2020

How does neutrino decay work?

Normal Ordering $\nu_3 \rightarrow \nu_1 \varphi$

N3AS seminar, Sep 1, 2020

 $\nu_{e} \sim |U_{e3}|^{2} \sim 0.02 \nu_{3}$

Enhancement in spectra

Símulated data at HK & Theía

Events/bin/10 y

- Consider Majorana neutrinos for maximum impact. Two channels: 1. $\nu_{3L} \rightarrow \nu_{1L} + \varphi$ 2. $\nu_{3L} \to \nu_{1R} (\bar{\nu}_{1R}) + \varphi$
- ν_{1R} acts as anti-neutrinos, and detected as well.

$$\Phi_{\nu_{3}}(E) = \int_{0}^{z_{\max}} \frac{dz'}{H(z')} R_{CCSN}(z') F_{\nu_{3}} (E(1+z')) e^{-\Gamma(E)\zeta(z')}$$

$$\Phi_{\nu_{2}}(E) = \int_{0}^{z_{\max}} \frac{dz'}{H(z')} R_{CCSN}(z') F_{\nu_{2}} (E(1+z'))$$

$$\Phi_{\nu_{1}}(E) = \int_{0}^{z_{\max}} \frac{dz'}{H(z')} \left\{ R_{CCSN}(z') F_{\nu_{1}} (E(1+z')) + \int_{E}^{\infty} dE' \left[\Phi_{\nu_{3}}(E') \Gamma(E') \psi_{\text{h.c.}}(E',E) + \Phi_{\bar{\nu}_{3}}(E') \Gamma(E') \right] \right\}$$

N3AS seminar, Sep 1, 2020

Constraints on neutrino lifetime

- HK and Theia can put some of the strongest constraints on neutrino lifetime. At 2- σ , $\tau_3/m_3 \sim 10^9 \,\text{s/eV}$.
- Solar bounds: $\tau_2/m_2 > 10^{-3}$ s/eV. $\tau_3/m_3 > 10^{-5}$ s/eV.

Berryman, de Gouvea, Hernandez, PRD2015 Funcke, Vitagliano, Raffelt PRD2020 + ...

• Long baseline: $\tau_3/m_3 > 10^{-10} \,\text{s/eV}$.

Gonzalez-Garcia, Maltoni, PLB2008 + ...

• IceCube: $\tau_3/m_3 \sim 10^2$ s/eV

Denton, Tamborra PRL2018

• CMB: $\tau/m \sim 10^9$ s/eV

Escudero, Fairbairn PRD2019

N3AS seminar, Sep 1, 2020

Pseudo-Dirac Neutrinos

Pseudo Dírac Neutrínos

- Neutrinos are Dirac, but have sub-dominant Majorana mass terms. Oscillations driven by this tiny mass.
- Generic Majorana mass matrix $\begin{pmatrix} m_L & m_D \\ m_D & m_R \end{pmatrix}$.

Pseudo-Dirac limit : $m_{L,R} \ll m_D$

Kobayashi, Lim, PRD2001

- 3 pairs of quasi-degenerate states, separated by δm_k^2 , which is much smaller than the usual Δm_{sol}^2 and Δm_{atm}^2 . $\nu_{\alpha L} = \frac{1}{\sqrt{2}} U_{\alpha j} (\nu_{js} + i \nu_{ja})$ $\nu_{\alpha S} = \frac{1}{\sqrt{2}} U_{\alpha j} (\nu_{js} - i \nu_{ja}).$
- Maximally mixed active and sterile states.

Bounds:

- 1. Solar neutrinos $\delta m^2 = 10^{-12} \,\mathrm{eV}^2$ de Gouvea, Huang, Jenkins, PRD2009
- 2. Atmospheric neutrinos $\delta m^2 > 10^{-4} \,\mathrm{eV}^2$ Beacom, Bell, et al., PRL2004
- 3. High energy astrophysical neutrinos $10^{-18} \,\mathrm{eV}^2 < \delta m^2 < 10^{-12} \,\mathrm{eV}^2$

Esmaili, Farzan, JCAP2012

Pseudo Dírac Neutrínos

- δm_k^2 will lead to oscillations at very large distances. Wave-packet separation decoherence also becomes important.
- Probability for $\nu_i \rightarrow \nu_\beta$

$$P_{i\beta}(z,E) = \frac{1}{2} |U_{\beta k}|^2 \left(1 + e^{-\left(\frac{L_3(z)}{L_{\text{coh}}}\right)^2} \cos\left(\frac{L_2(z)}{L_{\text{osc}}}\right) \right)$$

$$L_{\rm osc} = \frac{4\pi E}{\delta m_k^2} \approx 8.03 \ \text{Gpc} \left(\frac{E}{10 \ \text{MeV}}\right) \left(\frac{1}{2}\right)$$
$$L_{\rm coh} = \frac{4\sqrt{2}E^2}{|\delta m_k^2|} \sigma_x \approx 180 \ \text{Gpc} \left(\frac{E}{10 \ \text{MeV}}\right)$$

Increasing δm^2 reduces L_{osc} and $L_{coh'}$ and causes more oscillations

Oscillations due to pseudo-Dirac nature

Decreasing σ_x reduces $L_{\rm coh}$, and causes more decoherence

Sensitivity to tiny mass-squared differences

• DSNB sensitive to $\delta m^2 \sim \mathcal{O}(10^{-25} \,\mathrm{eV}^2)$ with a high significance. • Even if δm^2 is too tiny for oscillations, DSNB is still sensitive to decoherence for small σ_x

de Gouvea, Martinez-Soler, Perez-Gonzalez, MS, 2007.13748

Star formation Rate

$\Phi_{\nu}(E) = \int_{0}^{z_{\text{max}}} \frac{dz}{H(z)} R_{\text{CCSN}}(z) F_{\nu}(E(1+z))$

N3AS seminar, Sep 1, 2020

At the 2σ level, the results obtained from the DSNB are almost competetive with those obtained from decades of astronomical surveys.

Hubble constant

$\Phi_{\nu}(E) = \int_{0}^{z_{\text{max}}} \frac{dz}{H(z)} R_{\text{CCSN}}(z) F_{\nu}(E(1+z))$

DSNB

• Distance yardstick using neutrinos. Can confirm expanding Universe after 10 years of running. • Measure H_0 at 40% level, which is the systematic uncertainty.

• Caveat: Relies on an independent redshift dependent measurement of the SFR.

Cosmology: Hubble Parameter

de Gouvea, Martinez-Soler, Perez-Gonzalez, MS, 2007.13748

Conclusions

- The DSNB opens up a plethora of avenues for neutrino astronomy, next giant leap from the Sun and SN1987A.
- A future detection can provide neutrino only measurement of expansion rate of the Universe, complementary to measurement with photons and gravity waves.
- Competetive constraints on cosmological star formation rate, and hence the rate of core-collapse SNe in the Universe.
- Crucial for testing extreme neutrino properties, which cannot be tested otherwise.
- Other constraints discussed in the literature: black-hole fraction (primordial as well as astrophysical), alternate cosmological models, models of neutrino emission, and propagation, any new exotic physics in the neutrino sector.

N3AS seminar, Sep 1, 2020

Pseudo-Dírac Constraínts

Beacom, Bell, et al., PRL2004

N3AS seminar, Sep 1, 2020

Pseudo-Dírac Constraínts by SK+JUNO in 5 years

de Gouvea, Martinez-Soler, Perez-Gonzalez, MS, 2007.13748

